Skip to content

mapPartitions Api #19335

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 7,061 commits into from
Closed

mapPartitions Api #19335

wants to merge 7,061 commits into from

Conversation

listenLearning
Copy link

@listenLearning listenLearning commented Sep 25, 2017

No description provided.

yaooqinn and others added 30 commits August 18, 2017 00:24
…jars for reusing CliSessionState

## What changes were proposed in this pull request?

Set isolated to false while using builtin hive jars and `SessionState.get` returns a `CliSessionState` instance.

## How was this patch tested?

1 Unit Tests
2 Manually verified: `hive.exec.strachdir` was only created once because of reusing cliSessionState
```java
➜  spark git:(SPARK-21428) ✗ bin/spark-sql --conf spark.sql.hive.metastore.jars=builtin

log4j:WARN No appenders could be found for logger (org.apache.hadoop.util.Shell).
log4j:WARN Please initialize the log4j system properly.
log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info.
Using Spark's default log4j profile: org/apache/spark/log4j-defaults.properties
17/07/16 23:59:27 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
17/07/16 23:59:27 INFO HiveMetaStore: 0: Opening raw store with implemenation class:org.apache.hadoop.hive.metastore.ObjectStore
17/07/16 23:59:27 INFO ObjectStore: ObjectStore, initialize called
17/07/16 23:59:28 INFO Persistence: Property hive.metastore.integral.jdo.pushdown unknown - will be ignored
17/07/16 23:59:28 INFO Persistence: Property datanucleus.cache.level2 unknown - will be ignored
17/07/16 23:59:29 INFO ObjectStore: Setting MetaStore object pin classes with hive.metastore.cache.pinobjtypes="Table,StorageDescriptor,SerDeInfo,Partition,Database,Type,FieldSchema,Order"
17/07/16 23:59:30 INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as "embedded-only" so does not have its own datastore table.
17/07/16 23:59:30 INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as "embedded-only" so does not have its own datastore table.
17/07/16 23:59:31 INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MFieldSchema" is tagged as "embedded-only" so does not have its own datastore table.
17/07/16 23:59:31 INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MOrder" is tagged as "embedded-only" so does not have its own datastore table.
17/07/16 23:59:31 INFO MetaStoreDirectSql: Using direct SQL, underlying DB is DERBY
17/07/16 23:59:31 INFO ObjectStore: Initialized ObjectStore
17/07/16 23:59:31 WARN ObjectStore: Version information not found in metastore. hive.metastore.schema.verification is not enabled so recording the schema version 1.2.0
17/07/16 23:59:31 WARN ObjectStore: Failed to get database default, returning NoSuchObjectException
17/07/16 23:59:32 INFO HiveMetaStore: Added admin role in metastore
17/07/16 23:59:32 INFO HiveMetaStore: Added public role in metastore
17/07/16 23:59:32 INFO HiveMetaStore: No user is added in admin role, since config is empty
17/07/16 23:59:32 INFO HiveMetaStore: 0: get_all_databases
17/07/16 23:59:32 INFO audit: ugi=Kent	ip=unknown-ip-addr	cmd=get_all_databases
17/07/16 23:59:32 INFO HiveMetaStore: 0: get_functions: db=default pat=*
17/07/16 23:59:32 INFO audit: ugi=Kent	ip=unknown-ip-addr	cmd=get_functions: db=default pat=*
17/07/16 23:59:32 INFO Datastore: The class "org.apache.hadoop.hive.metastore.model.MResourceUri" is tagged as "embedded-only" so does not have its own datastore table.
17/07/16 23:59:32 INFO SessionState: Created local directory: /var/folders/k2/04p4k4ws73l6711h_mz2_tq00000gn/T/beea7261-221a-4711-89e8-8b12a9d37370_resources
17/07/16 23:59:32 INFO SessionState: Created HDFS directory: /tmp/hive/Kent/beea7261-221a-4711-89e8-8b12a9d37370
17/07/16 23:59:32 INFO SessionState: Created local directory: /var/folders/k2/04p4k4ws73l6711h_mz2_tq00000gn/T/Kent/beea7261-221a-4711-89e8-8b12a9d37370
17/07/16 23:59:32 INFO SessionState: Created HDFS directory: /tmp/hive/Kent/beea7261-221a-4711-89e8-8b12a9d37370/_tmp_space.db
17/07/16 23:59:32 INFO SparkContext: Running Spark version 2.3.0-SNAPSHOT
17/07/16 23:59:32 INFO SparkContext: Submitted application: SparkSQL::10.0.0.8
17/07/16 23:59:32 INFO SecurityManager: Changing view acls to: Kent
17/07/16 23:59:32 INFO SecurityManager: Changing modify acls to: Kent
17/07/16 23:59:32 INFO SecurityManager: Changing view acls groups to:
17/07/16 23:59:32 INFO SecurityManager: Changing modify acls groups to:
17/07/16 23:59:32 INFO SecurityManager: SecurityManager: authentication disabled; ui acls disabled; users  with view permissions: Set(Kent); groups with view permissions: Set(); users  with modify permissions: Set(Kent); groups with modify permissions: Set()
17/07/16 23:59:33 INFO Utils: Successfully started service 'sparkDriver' on port 51889.
17/07/16 23:59:33 INFO SparkEnv: Registering MapOutputTracker
17/07/16 23:59:33 INFO SparkEnv: Registering BlockManagerMaster
17/07/16 23:59:33 INFO BlockManagerMasterEndpoint: Using org.apache.spark.storage.DefaultTopologyMapper for getting topology information
17/07/16 23:59:33 INFO BlockManagerMasterEndpoint: BlockManagerMasterEndpoint up
17/07/16 23:59:33 INFO DiskBlockManager: Created local directory at /private/var/folders/k2/04p4k4ws73l6711h_mz2_tq00000gn/T/blockmgr-9cfae28a-01e9-4c73-a1f1-f76fa52fc7a5
17/07/16 23:59:33 INFO MemoryStore: MemoryStore started with capacity 366.3 MB
17/07/16 23:59:33 INFO SparkEnv: Registering OutputCommitCoordinator
17/07/16 23:59:33 INFO Utils: Successfully started service 'SparkUI' on port 4040.
17/07/16 23:59:33 INFO SparkUI: Bound SparkUI to 0.0.0.0, and started at http://10.0.0.8:4040
17/07/16 23:59:33 INFO Executor: Starting executor ID driver on host localhost
17/07/16 23:59:33 INFO Utils: Successfully started service 'org.apache.spark.network.netty.NettyBlockTransferService' on port 51890.
17/07/16 23:59:33 INFO NettyBlockTransferService: Server created on 10.0.0.8:51890
17/07/16 23:59:33 INFO BlockManager: Using org.apache.spark.storage.RandomBlockReplicationPolicy for block replication policy
17/07/16 23:59:33 INFO BlockManagerMaster: Registering BlockManager BlockManagerId(driver, 10.0.0.8, 51890, None)
17/07/16 23:59:33 INFO BlockManagerMasterEndpoint: Registering block manager 10.0.0.8:51890 with 366.3 MB RAM, BlockManagerId(driver, 10.0.0.8, 51890, None)
17/07/16 23:59:33 INFO BlockManagerMaster: Registered BlockManager BlockManagerId(driver, 10.0.0.8, 51890, None)
17/07/16 23:59:33 INFO BlockManager: Initialized BlockManager: BlockManagerId(driver, 10.0.0.8, 51890, None)
17/07/16 23:59:34 INFO SharedState: Setting hive.metastore.warehouse.dir ('null') to the value of spark.sql.warehouse.dir ('file:/Users/Kent/Documents/spark/spark-warehouse').
17/07/16 23:59:34 INFO SharedState: Warehouse path is 'file:/Users/Kent/Documents/spark/spark-warehouse'.
17/07/16 23:59:34 INFO HiveUtils: Initializing HiveMetastoreConnection version 1.2.1 using Spark classes.
17/07/16 23:59:34 INFO HiveClientImpl: Warehouse location for Hive client (version 1.2.2) is /user/hive/warehouse
17/07/16 23:59:34 INFO HiveMetaStore: 0: get_database: default
17/07/16 23:59:34 INFO audit: ugi=Kent	ip=unknown-ip-addr	cmd=get_database: default
17/07/16 23:59:34 INFO HiveClientImpl: Warehouse location for Hive client (version 1.2.2) is /user/hive/warehouse
17/07/16 23:59:34 INFO HiveMetaStore: 0: get_database: global_temp
17/07/16 23:59:34 INFO audit: ugi=Kent	ip=unknown-ip-addr	cmd=get_database: global_temp
17/07/16 23:59:34 WARN ObjectStore: Failed to get database global_temp, returning NoSuchObjectException
17/07/16 23:59:34 INFO HiveClientImpl: Warehouse location for Hive client (version 1.2.2) is /user/hive/warehouse
17/07/16 23:59:34 INFO StateStoreCoordinatorRef: Registered StateStoreCoordinator endpoint
spark-sql>

```
cc cloud-fan gatorsmile

Author: Kent Yao <[email protected]>
Author: hzyaoqin <[email protected]>

Closes #18648 from yaooqinn/SPARK-21428.
## What changes were proposed in this pull request?
When running IntelliJ, we are unable to capture the exception of memory leak detection.
> org.apache.spark.executor.Executor: Managed memory leak detected

Explicitly setting `spark.unsafe.exceptionOnMemoryLeak` in SparkConf when building the SparkSession, instead of reading it from system properties.

## How was this patch tested?
N/A

Author: gatorsmile <[email protected]>

Closes #18967 from gatorsmile/setExceptionOnMemoryLeak.
## What changes were proposed in this pull request?
This pr sorted output attributes on their name and exprId in `AttributeSet.toSeq` to make the order consistent.  If the order is different, spark possibly generates different code and then misses cache in `CodeGenerator`, e.g., `GenerateColumnAccessor` generates code depending on an input attribute order.

## How was this patch tested?
Added tests in `AttributeSetSuite` and manually checked if the cache worked well in the given query of the JIRA.

Author: Takeshi Yamamuro <[email protected]>

Closes #18959 from maropu/SPARK-18394.
## What changes were proposed in this pull request?

Add Kerberos Support to Mesos.   This includes kinit and --keytab support, but does not include delegation token renewal.

## How was this patch tested?

Manually against a Secure DC/OS Apache HDFS cluster.

Author: ArtRand <[email protected]>
Author: Michael Gummelt <[email protected]>

Closes #18519 from mgummelt/SPARK-16742-kerberos.
…s null as string type

## What changes were proposed in this pull request?
``` scala
scala> Seq(("""{"Hyukjin": 224, "John": 1225}""")).toDS.selectExpr("json_tuple(value, trim(null))").show()
...
java.lang.NullPointerException
	at ...
```

Currently the `null` field name will throw NullPointException. As a given field name null can't be matched with any field names in json, we just output null as its column value. This PR achieves it by returning a very unlikely column name `__NullFieldName` in evaluation of the field names.

## How was this patch tested?
Added unit test.

Author: Jen-Ming Chung <[email protected]>

Closes #18930 from jmchung/SPARK-21677.
## What changes were proposed in this pull request?
Decimal is a logical type of AVRO. We need to ensure the support of Hive's AVRO serde works well in Spark

## How was this patch tested?
N/A

Author: gatorsmile <[email protected]>

Closes #18977 from gatorsmile/addAvroTest.
…it is called statically to convert something into TimestampType

## What changes were proposed in this pull request?

https://issues.apache.org/jira/projects/SPARK/issues/SPARK-21739

This issue is caused by introducing TimeZoneAwareExpression.
When the **Cast** expression converts something into TimestampType, it should be resolved with setting `timezoneId`. In general, it is resolved in LogicalPlan phase.

However, there are still some places that use Cast expression statically to convert datatypes without setting `timezoneId`. In such cases,  `NoSuchElementException: None.get` will be thrown for TimestampType.

This PR is proposed to fix the issue. We have checked the whole project and found two such usages(i.e., in`TableReader` and `HiveTableScanExec`).

## How was this patch tested?

unit test

Author: donnyzone <[email protected]>

Closes #18960 from DonnyZone/spark-21739.
## What changes were proposed in this pull request?
Dataset.sample requires a boolean flag withReplacement as the first argument. However, most of the time users simply want to sample some records without replacement. This ticket introduces a new sample function that simply takes in the fraction and seed.

## How was this patch tested?
Tested manually. Not sure yet if we should add a test case for just this wrapper ...

Author: Reynold Xin <[email protected]>

Closes #18988 from rxin/SPARK-21778.
…Count and sizeInBytes

## What changes were proposed in this pull request?

Added support for ANALYZE TABLE [db_name].tablename PARTITION (partcol1[=val1], partcol2[=val2], ...) COMPUTE STATISTICS [NOSCAN] SQL command to calculate total number of rows and size in bytes for a subset of partitions. Calculated statistics are stored in Hive Metastore as user-defined properties attached to partition objects. Property names are the same as the ones used to store table-level statistics: spark.sql.statistics.totalSize and spark.sql.statistics.numRows.

When partition specification contains all partition columns with values, the command collects statistics for a single partition that matches the specification. When some partition columns are missing or listed without their values, the command collects statistics for all partitions which match a subset of partition column values specified.

For example, table t has 4 partitions with the following specs:

* Partition1: (ds='2008-04-08', hr=11)
* Partition2: (ds='2008-04-08', hr=12)
* Partition3: (ds='2008-04-09', hr=11)
* Partition4: (ds='2008-04-09', hr=12)

'ANALYZE TABLE t PARTITION (ds='2008-04-09', hr=11)' command will collect statistics only for partition 3.

'ANALYZE TABLE t PARTITION (ds='2008-04-09')' command will collect statistics for partitions 3 and 4.

'ANALYZE TABLE t PARTITION (ds, hr)' command will collect statistics for all four partitions.

When the optional parameter NOSCAN is specified, the command doesn't count number of rows and only gathers size in bytes.

The statistics gathered by ANALYZE TABLE command can be fetched using DESC EXTENDED [db_name.]tablename PARTITION command.

## How was this patch tested?

Added tests.

Author: Masha Basmanova <[email protected]>

Closes #18421 from mbasmanova/mbasmanova-analyze-partition.
…leak

## What changes were proposed in this pull request?

This is a follow-up of #18955 , to fix a bug that we break whole stage codegen for `Limit`.

## How was this patch tested?

existing tests.

Author: Wenchen Fan <[email protected]>

Closes #18993 from cloud-fan/bug.
## What changes were proposed in this pull request?

Fix typos

## How was this patch tested?

Existing tests

Author: Andrew Ash <[email protected]>

Closes #18996 from ash211/patch-2.
## What changes were proposed in this pull request?

Adds the recently added `summary` method to the python dataframe interface.

## How was this patch tested?

Additional inline doctests.

Author: Andrew Ray <[email protected]>

Closes #18762 from aray/summary-py.
## What changes were proposed in this pull request?
[SPARK-17701](https://github.com/apache/spark/pull/18600/files#diff-b9f96d092fb3fea76bcf75e016799678L77) removed `metadata` function, this PR removed the Docker-based Integration module that has been relevant to `SparkPlan.metadata`.

## How was this patch tested?
manual tests

Author: Yuming Wang <[email protected]>

Closes #19000 from wangyum/SPARK-21709.
…SurvivalRegression

## What changes were proposed in this pull request?

The line SchemaUtils.appendColumn(schema, $(predictionCol), IntegerType) did not modify the variable schema, hence only the last line had any effect. A temporary variable is used to correctly append the two columns predictionCol and probabilityCol.

## How was this patch tested?

Manually.

Please review http://spark.apache.org/contributing.html before opening a pull request.

Author: Cédric Pelvet <[email protected]>

Closes #18980 from sharp-pixel/master.
…SQL documentation build

## What changes were proposed in this pull request?

This PR proposes to install `mkdocs` by `pip install` if missing in the path. Mainly to fix Jenkins's documentation build failure in `spark-master-docs`. See https://amplab.cs.berkeley.edu/jenkins/job/spark-master-docs/3580/console.

It also adds `mkdocs` as requirements in `docs/README.md`.

## How was this patch tested?

I manually ran `jekyll build` under `docs` directory after manually removing `mkdocs` via `pip uninstall mkdocs`.

Also, tested this in the same way but on CentOS Linux release 7.3.1611 (Core) where I built Spark few times but never built documentation before and `mkdocs` is not installed.

```
...
Moving back into docs dir.
Moving to SQL directory and building docs.
Missing mkdocs in your path, trying to install mkdocs for SQL documentation generation.
Collecting mkdocs
  Downloading mkdocs-0.16.3-py2.py3-none-any.whl (1.2MB)
    100% |████████████████████████████████| 1.2MB 574kB/s
Requirement already satisfied: PyYAML>=3.10 in /usr/lib64/python2.7/site-packages (from mkdocs)
Collecting livereload>=2.5.1 (from mkdocs)
  Downloading livereload-2.5.1-py2-none-any.whl
Collecting tornado>=4.1 (from mkdocs)
  Downloading tornado-4.5.1.tar.gz (483kB)
    100% |████████████████████████████████| 491kB 1.4MB/s
Collecting Markdown>=2.3.1 (from mkdocs)
  Downloading Markdown-2.6.9.tar.gz (271kB)
    100% |████████████████████████████████| 276kB 2.4MB/s
Collecting click>=3.3 (from mkdocs)
  Downloading click-6.7-py2.py3-none-any.whl (71kB)
    100% |████████████████████████████████| 71kB 2.8MB/s
Requirement already satisfied: Jinja2>=2.7.1 in /usr/lib/python2.7/site-packages (from mkdocs)
Requirement already satisfied: six in /usr/lib/python2.7/site-packages (from livereload>=2.5.1->mkdocs)
Requirement already satisfied: backports.ssl_match_hostname in /usr/lib/python2.7/site-packages (from tornado>=4.1->mkdocs)
Collecting singledispatch (from tornado>=4.1->mkdocs)
  Downloading singledispatch-3.4.0.3-py2.py3-none-any.whl
Collecting certifi (from tornado>=4.1->mkdocs)
  Downloading certifi-2017.7.27.1-py2.py3-none-any.whl (349kB)
    100% |████████████████████████████████| 358kB 2.1MB/s
Collecting backports_abc>=0.4 (from tornado>=4.1->mkdocs)
  Downloading backports_abc-0.5-py2.py3-none-any.whl
Requirement already satisfied: MarkupSafe>=0.23 in /usr/lib/python2.7/site-packages (from Jinja2>=2.7.1->mkdocs)
Building wheels for collected packages: tornado, Markdown
  Running setup.py bdist_wheel for tornado ... done
  Stored in directory: /root/.cache/pip/wheels/84/83/cd/6a04602633457269d161344755e6766d24307189b7a67ff4b7
  Running setup.py bdist_wheel for Markdown ... done
  Stored in directory: /root/.cache/pip/wheels/bf/46/10/c93e17ae86ae3b3a919c7b39dad3b5ccf09aeb066419e5c1e5
Successfully built tornado Markdown
Installing collected packages: singledispatch, certifi, backports-abc, tornado, livereload, Markdown, click, mkdocs
Successfully installed Markdown-2.6.9 backports-abc-0.5 certifi-2017.7.27.1 click-6.7 livereload-2.5.1 mkdocs-0.16.3 singledispatch-3.4.0.3 tornado-4.5.1
Generating markdown files for SQL documentation.
Generating HTML files for SQL documentation.
INFO    -  Cleaning site directory
INFO    -  Building documentation to directory: .../spark/sql/site
Moving back into docs dir.
Making directory api/sql
cp -r ../sql/site/. api/sql
            Source: .../spark/docs
       Destination: .../spark/docs/_site
      Generating...
                    done.
 Auto-regeneration: disabled. Use --watch to enable.
 ```

Author: hyukjinkwon <[email protected]>

Closes #18984 from HyukjinKwon/sql-doc-mkdocs.
… paths are successfully removed

## What changes were proposed in this pull request?

Fix a typo in test.

## How was this patch tested?

Jenkins tests.

Author: Liang-Chi Hsieh <[email protected]>

Closes #19005 from viirya/SPARK-21721-followup.
… power of 2

## Problem
When an RDD (particularly with a low item-per-partition ratio) is repartitioned to numPartitions = power of 2, the resulting partitions are very uneven-sized, due to using fixed seed to initialize PRNG, and using the PRNG only once. See details in https://issues.apache.org/jira/browse/SPARK-21782

## What changes were proposed in this pull request?
Instead of directly using `0, 1, 2,...` seeds to initialize `Random`, hash them with `scala.util.hashing.byteswap32()`.

## How was this patch tested?
`build/mvn -Dtest=none -DwildcardSuites=org.apache.spark.rdd.RDDSuite test`

Author: Sergey Serebryakov <[email protected]>

Closes #18990 from megaserg/repartition-skew.
…ats ..."

## What changes were proposed in this pull request?

Reduce 'Skipping partitions' message to debug

## How was this patch tested?

Existing tests

Author: Sean Owen <[email protected]>

Closes #19010 from srowen/SPARK-21718.
Add Python API for `FeatureHasher` transformer.

## How was this patch tested?

New doc test.

Author: Nick Pentreath <[email protected]>

Closes #18970 from MLnick/SPARK-21468-pyspark-hasher.
## What changes were proposed in this pull request?

The previous PR(#19000) removed filter pushdown verification, This PR add them back.

## How was this patch tested?
manual tests

Author: Yuming Wang <[email protected]>

Closes #19002 from wangyum/SPARK-21790-follow-up.
…in Hive metastore.

For Hive tables, the current "replace the schema" code is the correct
path, except that an exception in that path should result in an error, and
not in retrying in a different way.

For data source tables, Spark may generate a non-compatible Hive table;
but for that to work with Hive 2.1, the detection of data source tables needs
to be fixed in the Hive client, to also consider the raw tables used by code
such as `alterTableSchema`.

Tested with existing and added unit tests (plus internal tests with a 2.1 metastore).

Author: Marcelo Vanzin <[email protected]>

Closes #18849 from vanzin/SPARK-21617.
## What changes were proposed in this pull request?
MLlib ```LinearRegression/LogisticRegression/LinearSVC``` always standardize the data during training to improve the rate of convergence regardless of _standardization_ is true or false. If _standardization_ is false, we perform reverse standardization by penalizing each component differently to get effectively the same objective function when the training dataset is not standardized. We should keep these comments in the code to let developers understand how we handle it correctly.

## How was this patch tested?
Existing tests, only adding some comments in code.

Author: Yanbo Liang <[email protected]>

Closes #18992 from yanboliang/SPARK-19762.
## What changes were proposed in this pull request?

Based on #18282 by rgbkrk this PR attempts to update to the current released cloudpickle and minimize the difference between Spark cloudpickle and "stock" cloud pickle with the goal of eventually using the stock cloud pickle.

Some notable changes:
* Import submodules accessed by pickled functions (cloudpipe/cloudpickle#80)
* Support recursive functions inside closures (cloudpipe/cloudpickle#89, cloudpipe/cloudpickle#90)
* Fix ResourceWarnings and DeprecationWarnings (cloudpipe/cloudpickle#88)
* Assume modules with __file__ attribute are not dynamic (cloudpipe/cloudpickle#85)
* Make cloudpickle Python 3.6 compatible (cloudpipe/cloudpickle#72)
* Allow pickling of builtin methods (cloudpipe/cloudpickle#57)
* Add ability to pickle dynamically created modules (cloudpipe/cloudpickle#52)
* Support method descriptor (cloudpipe/cloudpickle#46)
* No more pickling of closed files, was broken on Python 3 (cloudpipe/cloudpickle#32)
* ** Remove non-standard __transient__check (cloudpipe/cloudpickle#110)** -- while we don't use this internally, and have no tests or documentation for its use, downstream code may use __transient__, although it has never been part of the API, if we merge this we should include a note about this in the release notes.
* Support for pickling loggers (yay!) (cloudpipe/cloudpickle#96)
* BUG: Fix crash when pickling dynamic class cycles. (cloudpipe/cloudpickle#102)

## How was this patch tested?

Existing PySpark unit tests + the unit tests from the cloudpickle project on their own.

Author: Holden Karau <[email protected]>
Author: Kyle Kelley <[email protected]>

Closes #18734 from holdenk/holden-rgbkrk-cloudpickle-upgrades.
…plementation

## What changes were proposed in this pull request?

SPARK-21100 introduced a new `summary` method to the Scala/Java Dataset API that included  expanded statistics (vs `describe`) and control over which statistics to compute. Currently in the R API `summary` acts as an alias for `describe`. This patch updates the R API to call the new `summary` method in the JVM that includes additional statistics and ability to select which to compute.

This does not break the current interface as the present `summary` method does not take additional arguments like `describe` and the output was never meant to be used programmatically.

## How was this patch tested?

Modified and additional unit tests.

Author: Andrew Ray <[email protected]>

Closes #18786 from aray/summary-r.
## What changes were proposed in this pull request?
We do not have any Hive-specific parser. It does not make sense to keep a parser-specific test suite `HiveDDLCommandSuite.scala` in the Hive package. This PR is to remove it.

## How was this patch tested?
N/A

Author: gatorsmile <[email protected]>

Closes #19015 from gatorsmile/combineDDL.
…bmit code

There're two code in Launcher and SparkSubmit will will explicitly list all the Spark submodules, newly added kvstore module is missing in this two parts, so submitting a minor PR to fix this.

Author: jerryshao <[email protected]>

Closes #19014 from jerryshao/missing-kvstore.
…F(UserDefinedAggregateFunction)

## What changes were proposed in this pull request?
This PR is to enable users to create persistent Scala UDAF (that extends UserDefinedAggregateFunction).

```SQL
CREATE FUNCTION myDoubleAvg AS 'test.org.apache.spark.sql.MyDoubleAvg'
```

Before this PR, Spark UDAF only can be registered through the API `spark.udf.register(...)`

## How was this patch tested?
Added test cases

Author: gatorsmile <[email protected]>

Closes #18700 from gatorsmile/javaUDFinScala.
…schemas inferred/controlled by Spark SQL

## What changes were proposed in this pull request?
For Hive-serde tables, we always respect the schema stored in Hive metastore, because the schema could be altered by the other engines that share the same metastore. Thus, we always trust the metastore-controlled schema for Hive-serde tables when the schemas are different (without considering the nullability and cases). However, in some scenarios, Hive metastore also could INCORRECTLY overwrite the schemas when the serde and Hive metastore built-in serde are different.

The proposed solution is to introduce a table-specific option for such scenarios. For a specific table, users can make Spark always respect Spark-inferred/controlled schema instead of trusting metastore-controlled schema. By default, we trust Hive metastore-controlled schema.

## How was this patch tested?
Added a cross-version test case

Author: gatorsmile <[email protected]>

Closes #19003 from gatorsmile/respectSparkSchema.
…td contains zero

## What changes were proposed in this pull request?

fix bug of MLOR do not work correctly when featureStd contains zero

We can reproduce the bug through such dataset (features including zero variance), will generate wrong result (all coefficients becomes 0)
```
    val multinomialDatasetWithZeroVar = {
      val nPoints = 100
      val coefficients = Array(
        -0.57997, 0.912083, -0.371077,
        -0.16624, -0.84355, -0.048509)

      val xMean = Array(5.843, 3.0)
      val xVariance = Array(0.6856, 0.0)  // including zero variance

      val testData = generateMultinomialLogisticInput(
        coefficients, xMean, xVariance, addIntercept = true, nPoints, seed)

      val df = sc.parallelize(testData, 4).toDF().withColumn("weight", lit(1.0))
      df.cache()
      df
    }
```
## How was this patch tested?

testcase added.

Author: WeichenXu <[email protected]>

Closes #18896 from WeichenXu123/fix_mlor_stdvalue_zero_bug.
…mator

## What changes were proposed in this pull request?

Added call to copy values of Params from Estimator to Model after fit in PySpark ML.  This will copy values for any params that are also defined in the Model.  Since currently most Models do not define the same params from the Estimator, also added method to create new Params from looking at the Java object if they do not exist in the Python object.  This is a temporary fix that can be removed once the PySpark models properly define the params themselves.

## How was this patch tested?

Refactored the `check_params` test to optionally check if the model params for Python and Java match and added this check to an existing fitted model that shares params between Estimator and Model.

Author: Bryan Cutler <[email protected]>

Closes #17849 from BryanCutler/pyspark-models-own-params-SPARK-10931.
viirya and others added 13 commits September 22, 2017 22:39
…th nullable int columns

## What changes were proposed in this pull request?

When calling `DataFrame.toPandas()` (without Arrow enabled), if there is a `IntegralType` column (`IntegerType`, `ShortType`, `ByteType`) that has null values the following exception is thrown:

    ValueError: Cannot convert non-finite values (NA or inf) to integer

This is because the null values first get converted to float NaN during the construction of the Pandas DataFrame in `from_records`, and then it is attempted to be converted back to to an integer where it fails.

The fix is going to check if the Pandas DataFrame can cause such failure when converting, if so, we don't do the conversion and use the inferred type by Pandas.

Closes #18945

## How was this patch tested?

Added pyspark test.

Author: Liang-Chi Hsieh <[email protected]>

Closes #19319 from viirya/SPARK-21766.
…st/load bug

## What changes were proposed in this pull request?

Currently the param of CrossValidator/TrainValidationSplit persist/loading is hardcoding, which is different with other ML estimators. This cause persist bug for new added `parallelism` param.

I refactor related code, avoid hardcoding persist/load param. And in the same time, it solve the `parallelism` persisting bug.

This refactoring is very useful because we will add more new params in #19208 , hardcoding param persisting/loading making the thing adding new params very troublesome.

## How was this patch tested?

Test added.

Author: WeichenXu <[email protected]>

Closes #19278 from WeichenXu123/fix-tuning-param-bug.
## What changes were proposed in this pull request?

Fix for setup of `SPARK_JARS_DIR` on Windows as it looks for `%SPARK_HOME%\RELEASE` file instead of `%SPARK_HOME%\jars` as it should. RELEASE file is not included in the `pip` build of PySpark.

## How was this patch tested?

Local install of PySpark on Anaconda 4.4.0 (Python 3.6.1).

Author: Jakub Nowacki <[email protected]>

Closes #19310 from jsnowacki/master.
… page.

## What changes were proposed in this pull request?

The 'job ids' list style needs to be changed in the SQL page. There are two reasons:
1. If a job id is a line, there are a lot of job ids, then the table row height will be high. As shown below:
![3](https://user-images.githubusercontent.com/26266482/30732242-2fb11442-9fa4-11e7-98ea-80a98f280243.png)

2. should be consistent with the 'JDBC / ODBC Server' page style, I am in this way to modify the style. As shown below:
![2](https://user-images.githubusercontent.com/26266482/30732257-3c550820-9fa4-11e7-9d8e-467d3011e0ac.png)

My changes are as follows:
![6](https://user-images.githubusercontent.com/26266482/30732318-8f61d8b8-9fa4-11e7-8af5-037ed12b13c9.png)

![5](https://user-images.githubusercontent.com/26266482/30732284-5b6a6c00-9fa4-11e7-8db9-3a2291f37ae6.png)

## How was this patch tested?
manual tests

Please review http://spark.apache.org/contributing.html before opening a pull request.

Author: guoxiaolong <[email protected]>

Closes #19320 from guoxiaolongzte/SPARK-22099.
…r the specific VM array size limitations

## What changes were proposed in this pull request?

Try to avoid allocating an array bigger than Integer.MAX_VALUE - 8, which is the actual max size on some JVMs, in several places

## How was this patch tested?

Existing tests

Author: Sean Owen <[email protected]>

Closes #19266 from srowen/SPARK-22033.
…amps in partition column

## What changes were proposed in this pull request?

This PR proposes to resolve the type conflicts in strings and timestamps in partition column values.
It looks we need to set the timezone as it needs a cast between strings and timestamps.

```scala
val df = Seq((1, "2015-01-01 00:00:00"), (2, "2014-01-01 00:00:00"), (3, "blah")).toDF("i", "str")
val path = "/tmp/test.parquet"
df.write.format("parquet").partitionBy("str").save(path)
spark.read.parquet(path).show()
```

**Before**

```
java.util.NoSuchElementException: None.get
  at scala.None$.get(Option.scala:347)
  at scala.None$.get(Option.scala:345)
  at org.apache.spark.sql.catalyst.expressions.TimeZoneAwareExpression$class.timeZone(datetimeExpressions.scala:46)
  at org.apache.spark.sql.catalyst.expressions.Cast.timeZone$lzycompute(Cast.scala:172)
  at org.apache.spark.sql.catalyst.expressions.Cast.timeZone(Cast.scala:172)
  at org.apache.spark.sql.catalyst.expressions.Cast$$anonfun$castToString$3$$anonfun$apply$16.apply(Cast.scala:208)
  at org.apache.spark.sql.catalyst.expressions.Cast$$anonfun$castToString$3$$anonfun$apply$16.apply(Cast.scala:208)
  at org.apache.spark.sql.catalyst.expressions.Cast.org$apache$spark$sql$catalyst$expressions$Cast$$buildCast(Cast.scala:201)
  at org.apache.spark.sql.catalyst.expressions.Cast$$anonfun$castToString$3.apply(Cast.scala:207)
  at org.apache.spark.sql.catalyst.expressions.Cast.nullSafeEval(Cast.scala:533)
  at org.apache.spark.sql.catalyst.expressions.UnaryExpression.eval(Expression.scala:331)
  at org.apache.spark.sql.execution.datasources.PartitioningUtils$$anonfun$org$apache$spark$sql$execution$datasources$PartitioningUtils$$resolveTypeConflicts$1.apply(PartitioningUtils.scala:481)
  at org.apache.spark.sql.execution.datasources.PartitioningUtils$$anonfun$org$apache$spark$sql$execution$datasources$PartitioningUtils$$resolveTypeConflicts$1.apply(PartitioningUtils.scala:480)
  at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
  at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
  at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
```

**After**

```
+---+-------------------+
|  i|                str|
+---+-------------------+
|  2|2014-01-01 00:00:00|
|  1|2015-01-01 00:00:00|
|  3|               blah|
+---+-------------------+
```

## How was this patch tested?

Unit tests added in `ParquetPartitionDiscoverySuite` and manual tests.

Author: hyukjinkwon <[email protected]>

Closes #19331 from HyukjinKwon/SPARK-22109.
…torage

Change-Id: I88c272444ca734dc2cbc2592607c11287b90a383

## What changes were proposed in this pull request?

The documentation on File DStreams is enhanced to

1. Detail the exact timestamp logic for examining directories and files.
1. Detail how object stores different from filesystems, and so how using them as a source of data should be treated with caution, possibly publishing data to the store differently (direct PUTs as opposed to stage + rename)

## How was this patch tested?

n/a

Author: Steve Loughran <[email protected]>

Closes #17743 from steveloughran/cloud/SPARK-20448-document-dstream-blobstore.
… with arguments and examples for trim function

## What changes were proposed in this pull request?

This PR proposes to enhance the documentation for `trim` functions in the function description session.

- Add more `usage`, `arguments` and `examples` for the trim function
- Adjust space in the `usage` session

After the changes, the trim function documentation will look like this:

- `trim`

```trim(str) - Removes the leading and trailing space characters from str.

trim(BOTH trimStr FROM str) - Remove the leading and trailing trimStr characters from str

trim(LEADING trimStr FROM str) - Remove the leading trimStr characters from str

trim(TRAILING trimStr FROM str) - Remove the trailing trimStr characters from str

Arguments:

str - a string expression
trimStr - the trim string characters to trim, the default value is a single space
BOTH, FROM - these are keywords to specify trimming string characters from both ends of the string
LEADING, FROM - these are keywords to specify trimming string characters from the left end of the string
TRAILING, FROM - these are keywords to specify trimming string characters from the right end of the string
Examples:

> SELECT trim('    SparkSQL   ');
 SparkSQL
> SELECT trim('SL', 'SSparkSQLS');
 parkSQ
> SELECT trim(BOTH 'SL' FROM 'SSparkSQLS');
 parkSQ
> SELECT trim(LEADING 'SL' FROM 'SSparkSQLS');
 parkSQLS
> SELECT trim(TRAILING 'SL' FROM 'SSparkSQLS');
 SSparkSQ
```

- `ltrim`

```ltrim

ltrim(str) - Removes the leading space characters from str.

ltrim(trimStr, str) - Removes the leading string contains the characters from the trim string

Arguments:

str - a string expression
trimStr - the trim string characters to trim, the default value is a single space
Examples:

> SELECT ltrim('    SparkSQL   ');
 SparkSQL
> SELECT ltrim('Sp', 'SSparkSQLS');
 arkSQLS
```

- `rtrim`
```rtrim

rtrim(str) - Removes the trailing space characters from str.

rtrim(trimStr, str) - Removes the trailing string which contains the characters from the trim string from the str

Arguments:

str - a string expression
trimStr - the trim string characters to trim, the default value is a single space
Examples:

> SELECT rtrim('    SparkSQL   ');
 SparkSQL
> SELECT rtrim('LQSa', 'SSparkSQLS');
 SSpark
```

This is the trim characters function jira: [trim function](https://issues.apache.org/jira/browse/SPARK-14878)

## How was this patch tested?

Manually tested
```
spark-sql> describe function extended trim;
17/09/22 17:03:04 INFO CodeGenerator: Code generated in 153.026533 ms
Function: trim
Class: org.apache.spark.sql.catalyst.expressions.StringTrim
Usage:
    trim(str) - Removes the leading and trailing space characters from `str`.

    trim(BOTH trimStr FROM str) - Remove the leading and trailing `trimStr` characters from `str`

    trim(LEADING trimStr FROM str) - Remove the leading `trimStr` characters from `str`

    trim(TRAILING trimStr FROM str) - Remove the trailing `trimStr` characters from `str`

Extended Usage:
    Arguments:
      * str - a string expression
      * trimStr - the trim string characters to trim, the default value is a single space
      * BOTH, FROM - these are keywords to specify trimming string characters from both ends of
          the string
      * LEADING, FROM - these are keywords to specify trimming string characters from the left
          end of the string
      * TRAILING, FROM - these are keywords to specify trimming string characters from the right
          end of the string

    Examples:
      > SELECT trim('    SparkSQL   ');
       SparkSQL
      > SELECT trim('SL', 'SSparkSQLS');
       parkSQ
      > SELECT trim(BOTH 'SL' FROM 'SSparkSQLS');
       parkSQ
      > SELECT trim(LEADING 'SL' FROM 'SSparkSQLS');
       parkSQLS
      > SELECT trim(TRAILING 'SL' FROM 'SSparkSQLS');
       SSparkSQ
  ```
```
spark-sql> describe function extended ltrim;
Function: ltrim
Class: org.apache.spark.sql.catalyst.expressions.StringTrimLeft
Usage:
    ltrim(str) - Removes the leading space characters from `str`.

    ltrim(trimStr, str) - Removes the leading string contains the characters from the trim string

Extended Usage:
    Arguments:
      * str - a string expression
      * trimStr - the trim string characters to trim, the default value is a single space

    Examples:
      > SELECT ltrim('    SparkSQL   ');
       SparkSQL
      > SELECT ltrim('Sp', 'SSparkSQLS');
       arkSQLS

```

```
spark-sql> describe function extended rtrim;
Function: rtrim
Class: org.apache.spark.sql.catalyst.expressions.StringTrimRight
Usage:
    rtrim(str) - Removes the trailing space characters from `str`.

    rtrim(trimStr, str) - Removes the trailing string which contains the characters from the trim string from the `str`

Extended Usage:
    Arguments:
      * str - a string expression
      * trimStr - the trim string characters to trim, the default value is a single space

    Examples:
      > SELECT rtrim('    SparkSQL   ');
       SparkSQL
      > SELECT rtrim('LQSa', 'SSparkSQLS');
       SSpark

```

Author: Kevin Yu <[email protected]>

Closes #19329 from kevinyu98/spark-14878-5.
…thod in AggregatedDialect

## What changes were proposed in this pull request?

The implemented `isCascadingTruncateTable` in `AggregatedDialect` is wrong. When no dialect claims cascading, once there is an unknown cascading truncate in the dialects, we should return unknown cascading, instead of false.

## How was this patch tested?

Added test.

Author: Liang-Chi Hsieh <[email protected]>

Closes #19286 from viirya/SPARK-21338-followup.
## What changes were proposed in this pull request?

This PR proposes to remove `assume` in `Utils.resolveURIs` and replace `assume` to `assert` in `Utils.resolveURI` in the test cases in `UtilsSuite`.

It looks `Utils.resolveURIs` supports multiple but also single paths as input. So, it looks not meaningful to check if the input has `,`.

For the test for `Utils.resolveURI`, I replaced it to `assert` because it looks taking single path and in order to prevent future mistakes when adding more tests here.

For `assume` in `HiveDDLSuite`, it looks it should be `assert` to test at the last
## How was this patch tested?

Fixed unit tests.

Author: hyukjinkwon <[email protected]>

Closes #19332 from HyukjinKwon/SPARK-22093.
…exception occurs.

## What changes were proposed in this pull request?

EventLoggingListener use `val in = new BufferedInputStream(fs.open(log))` and will close it if `codec.map(_.compressedInputStream(in)).getOrElse(in)`  occurs an exception .
But, if `CompressionCodec.createCodec(new SparkConf, c)` throws an exception, the BufferedInputStream `in` will not be closed anymore.

## How was this patch tested?

exist tests

Author: zuotingbing <[email protected]>

Closes #19277 from zuotingbing/SPARK-22058.
… for Scala 2.12 + other 2.12 fixes

## What changes were proposed in this pull request?

Enable Scala 2.12 REPL. Fix most remaining issues with 2.12 compilation and warnings, including:

- Selecting Kafka 0.10.1+ for Scala 2.12 and patching over a minor API difference
- Fixing lots of "eta expansion of zero arg method deprecated" warnings
- Resolving the SparkContext.sequenceFile implicits compile problem
- Fixing an odd but valid jetty-server missing dependency in hive-thriftserver

## How was this patch tested?

Existing tests

Author: Sean Owen <[email protected]>

Closes #19307 from srowen/Scala212.
## What changes were proposed in this pull request?

Updated docs so that a line of python in the quick start guide executes. Closes #19283

## How was this patch tested?

Existing tests.

Author: John O'Leary <[email protected]>

Closes #19326 from jgoleary/issues/22107.
@HyukjinKwon
Copy link
Member

@listenLearning Close this please.

@AmplabJenkins
Copy link

Can one of the admins verify this patch?

@HyukjinKwon
Copy link
Member

@listenLearning, If you'd like to ask a question, please ask this to the mailing list (see https://spark.apache.org/community.html).

@listenLearning listenLearning changed the title mapPartitions Api mapPartitions Api #24 Sep 25, 2017
@listenLearning listenLearning changed the title mapPartitions Api #24 mapPartitions Api Sep 25, 2017
@HyukjinKwon
Copy link
Member

ping @listenLearning!

wzhfy and others added 5 commits September 25, 2017 09:28
… and change the output type to be the same as input type

## What changes were proposed in this pull request?

The `percentile_approx` function previously accepted numeric type input and output double type results.

But since all numeric types, date and timestamp types are represented as numerics internally, `percentile_approx` can support them easily.

After this PR, it supports date type, timestamp type and numeric types as input types. The result type is also changed to be the same as the input type, which is more reasonable for percentiles.

This change is also required when we generate equi-height histograms for these types.

## How was this patch tested?

Added a new test and modified some existing tests.

Author: Zhenhua Wang <[email protected]>

Closes #19321 from wzhfy/approx_percentile_support_types.
## What changes were proposed in this pull request?

MemoryStore.evictBlocksToFreeSpace acquires write locks for all the
blocks it intends to evict up front.  If there is a failure to evict
blocks (eg., some failure dropping a block to disk), then we have to
release the lock.  Otherwise the lock is never released and an executor
trying to get the lock will wait forever.

## How was this patch tested?

Added unit test.

Author: Imran Rashid <[email protected]>

Closes #19311 from squito/SPARK-22083.
…ction in codegen

## What changes were proposed in this pull request?

HashAggregateExec codegen uses two paths for fast hash table and a generic one.
It generates code paths for iterating over both, and both code paths generate the consume code of the parent operator, resulting in that code being expanded twice.
This leads to a long generated function that might be an issue for the compiler (see e.g. SPARK-21603).
I propose to remove the double expansion by generating the consume code in a helper function that can just be called from both iterating loops.

An issue with separating the `consume` code to a helper function was that a number of places relied and assumed on being in the scope of an outside `produce` loop and e.g. use `continue` to jump out.
I replaced such code flows with nested scopes. It is code that should be handled the same by compiler, while getting rid of depending on assumptions that are outside of the `consume`'s own scope.

## How was this patch tested?

Existing test coverage.

Author: Juliusz Sompolski <[email protected]>

Closes #19324 from juliuszsompolski/aggrconsumecodegen.
… warehouse directory

## What changes were proposed in this pull request?
During TestHiveSparkSession.reset(), which is called after each TestHiveSingleton suite, we now delete and recreate the Hive warehouse directory.

## How was this patch tested?
Ran full suite of tests locally, verified that they pass.

Author: Greg Owen <[email protected]>

Closes #19341 from GregOwen/SPARK-22120.
…ctests

## What changes were proposed in this pull request?

This change disables the use of 0-parameter pandas_udfs due to the API being overly complex and awkward, and can easily be worked around by using an index column as an input argument.  Also added doctests for pandas_udfs which revealed bugs for handling empty partitions and using the pandas_udf decorator.

## How was this patch tested?

Reworked existing 0-parameter test to verify error is raised, added doctest for pandas_udf, added new tests for empty partition and decorator usage.

Author: Bryan Cutler <[email protected]>

Closes #19325 from BryanCutler/arrow-pandas_udf-0-param-remove-SPARK-22106.
@caneGuy
Copy link
Contributor

caneGuy commented Sep 26, 2017 via email

viirya and others added 3 commits September 26, 2017 15:23
…n under codegen

## What changes were proposed in this pull request?

We can override `usedInputs` to claim that an operator defers input evaluation. `Sample` and `Limit` are two operators which should claim it but don't. We should do it.

## How was this patch tested?

Existing tests.

Author: Liang-Chi Hsieh <[email protected]>

Closes #19345 from viirya/SPARK-22124.
## What changes were proposed in this pull request?

Address PR comments that appeared post-merge, to rename `addExtraCode` to `addInnerClass`,
and not count the size of the inner class to the size of the outer class.

## How was this patch tested?

YOLO.

Author: Juliusz Sompolski <[email protected]>

Closes #19353 from juliuszsompolski/SPARK-22103followup.
Closes #13794
Closes #18474
Closes #18897
Closes #18978
Closes #19152
Closes #19238
Closes #19295
Closes #19334
Closes #19335
Closes #19347
Closes #19236
Closes #19244
Closes #19300
Closes #19315
Closes #19356
Closes #15009
Closes #18253

Author: hyukjinkwon <[email protected]>

Closes #19348 from HyukjinKwon/stale-prs.
@asfgit asfgit closed this in ceaec93 Sep 27, 2017
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.