Skip to content

Fixes issue 160 #162

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Mar 5, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
693 changes: 436 additions & 257 deletions browser.js

Large diffs are not rendered by default.

71 changes: 35 additions & 36 deletions browser.min.js

Large diffs are not rendered by default.

1 change: 1 addition & 0 deletions dist/neural-network.js

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

2 changes: 1 addition & 1 deletion dist/neural-network.js.map

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion package.json
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
{
"name": "brain.js",
"description": "Neural network library",
"version": "1.1.1",
"version": "1.1.2",
"author": "Heather Arthur <[email protected]>",
"repository": {
"type": "git",
Expand Down
1 change: 1 addition & 0 deletions src/neural-network.js
Original file line number Diff line number Diff line change
Expand Up @@ -331,6 +331,7 @@ export default class NeuralNetwork {
_getTrainOptsJSON() {
return Object.keys(NeuralNetwork.trainDefaults)
.reduce((opts, opt) => {
if (opt === 'timeout' && this.trainOpts[opt] === Infinity) return opts;
if (this.trainOpts[opt]) opts[opt] = this.trainOpts[opt];
if (opt === 'log') opts.log = typeof opts.log === 'function';
return opts;
Expand Down
121 changes: 104 additions & 17 deletions test/base/json.js
Original file line number Diff line number Diff line change
Expand Up @@ -27,7 +27,12 @@ describe('JSON', () => {
trainingOpts.log = true;

const serialized = originalNet.toJSON();
const serializedNet = new NeuralNetwork().fromJSON(serialized);
const serializedNet = new NeuralNetwork()
.fromJSON(
JSON.parse(
JSON.stringify(serialized)
)
);

const input = {'0' : Math.random(), b: Math.random()};
describe('.toJSON()', () => {
Expand Down Expand Up @@ -71,39 +76,39 @@ describe('JSON', () => {

describe('.trainOpts', () => {
it('training options iterations', () => {
assert.equal(trainingOpts.iterations, serialized.trainOpts.iterations, `trainingOpts.are: ${trainingOpts.iterations} serialized should be the same but are: ${serialized.trainOpts.iterations}`);
assert.equal(trainingOpts.iterations, serialized.trainOpts.iterations, `trainingOpts are: ${trainingOpts.iterations} serialized should be the same but are: ${serialized.trainOpts.iterations}`);
});

it('training options errorThresh', () => {
assert.equal(trainingOpts.errorThresh, serialized.trainOpts.errorThresh, `trainingOpts.are: ${trainingOpts.errorThresh} serialized should be the same but are: ${serialized.trainOpts.errorThresh}`);
assert.equal(trainingOpts.errorThresh, serialized.trainOpts.errorThresh, `trainingOpts are: ${trainingOpts.errorThresh} serialized should be the same but are: ${serialized.trainOpts.errorThresh}`);
});

it('training options log', () => {
assert.equal(trainingOpts.log, serialized.trainOpts.log, `log are: ${trainingOpts.log} serialized should be the same but are: ${serialized.trainOpts.log}`);
});

it('training options logPeriod', () => {
assert.equal(trainingOpts.logPeriod, serialized.trainOpts.logPeriod, `trainingOpts.are: ${trainingOpts.logPeriod} serialized should be the same but are: ${serialized.trainOpts.logPeriod}`);
assert.equal(trainingOpts.logPeriod, serialized.trainOpts.logPeriod, `trainingOpts are: ${trainingOpts.logPeriod} serialized should be the same but are: ${serialized.trainOpts.logPeriod}`);
});

it('training options learningRate', () => {
assert.equal(trainingOpts.learningRate, serialized.trainOpts.learningRate, `trainingOpts.are: ${trainingOpts.learningRate} serialized should be the same but are: ${serialized.trainOpts.learningRate}`);
assert.equal(trainingOpts.learningRate, serialized.trainOpts.learningRate, `trainingOpts are: ${trainingOpts.learningRate} serialized should be the same but are: ${serialized.trainOpts.learningRate}`);
});

it('training options momentum', () => {
assert.equal(trainingOpts.momentum, serialized.trainOpts.momentum, `trainingOpts.are: ${trainingOpts.momentum} serialized should be the same but are: ${serialized.trainOpts.momentum}`);
assert.equal(trainingOpts.momentum, serialized.trainOpts.momentum, `trainingOpts are: ${trainingOpts.momentum} serialized should be the same but are: ${serialized.trainOpts.momentum}`);
});

it('training options callback', () => {
assert.equal(trainingOpts.callback, serialized.trainOpts.callback, `trainingOpts.are: ${trainingOpts.callback} serialized should be the same but are: ${serialized.trainOpts.callback}`);
assert.equal(trainingOpts.callback, serialized.trainOpts.callback, `trainingOpts are: ${trainingOpts.callback} serialized should be the same but are: ${serialized.trainOpts.callback}`);
});

it('training options callbackPeriod', () => {
assert.equal(trainingOpts.callbackPeriod, serialized.trainOpts.callbackPeriod, `trainingOpts.are: ${trainingOpts.callbackPeriod} serialized should be the same but are: ${serialized.trainOpts.callbackPeriod}`);
assert.equal(trainingOpts.callbackPeriod, serialized.trainOpts.callbackPeriod, `trainingOpts are: ${trainingOpts.callbackPeriod} serialized should be the same but are: ${serialized.trainOpts.callbackPeriod}`);
});

it('training options timeout', () => {
assert.equal(trainingOpts.timeout, serialized.trainOpts.timeout, `trainingOpts.are: ${trainingOpts.timeout} serialized should be the same but are: ${serialized.trainOpts.timeout}`);
assert.equal(trainingOpts.timeout, serialized.trainOpts.timeout, `trainingOpts are: ${trainingOpts.timeout} serialized should be the same but are: ${serialized.trainOpts.timeout}`);
});
});

Expand Down Expand Up @@ -137,11 +142,11 @@ describe('JSON', () => {

describe('.trainOpts', () => {
it('training options iterations', () => {
assert.equal(trainingOpts.iterations, serializedNet.trainOpts.iterations, `trainingOpts.are: ${trainingOpts.iterations} serializedNet should be the same but are: ${serializedNet.trainOpts.iterations}`);
assert.equal(trainingOpts.iterations, serializedNet.trainOpts.iterations, `trainingOpts are: ${trainingOpts.iterations} serializedNet should be the same but are: ${serializedNet.trainOpts.iterations}`);
});

it('training options errorThresh', () => {
assert.equal(trainingOpts.errorThresh, serializedNet.trainOpts.errorThresh, `trainingOpts.are: ${trainingOpts.errorThresh} serializedNet should be the same but are: ${serializedNet.trainOpts.errorThresh}`);
assert.equal(trainingOpts.errorThresh, serializedNet.trainOpts.errorThresh, `trainingOpts are: ${trainingOpts.errorThresh} serializedNet should be the same but are: ${serializedNet.trainOpts.errorThresh}`);
});

it('training options log', () => {
Expand All @@ -150,27 +155,27 @@ describe('JSON', () => {
});

it('training options logPeriod', () => {
assert.equal(trainingOpts.logPeriod, serializedNet.trainOpts.logPeriod, `trainingOpts.are: ${trainingOpts.logPeriod} serializedNet should be the same but are: ${serializedNet.trainOpts.logPeriod}`);
assert.equal(trainingOpts.logPeriod, serializedNet.trainOpts.logPeriod, `trainingOpts are: ${trainingOpts.logPeriod} serializedNet should be the same but are: ${serializedNet.trainOpts.logPeriod}`);
});

it('training options learningRate', () => {
assert.equal(trainingOpts.learningRate, serializedNet.trainOpts.learningRate, `trainingOpts.are: ${trainingOpts.learningRate} serializedNet should be the same but are: ${serializedNet.trainOpts.learningRate}`);
assert.equal(trainingOpts.learningRate, serializedNet.trainOpts.learningRate, `trainingOpts are: ${trainingOpts.learningRate} serializedNet should be the same but are: ${serializedNet.trainOpts.learningRate}`);
});

it('training options momentum', () => {
assert.equal(trainingOpts.momentum, serializedNet.trainOpts.momentum, `trainingOpts.are: ${trainingOpts.momentum} serializedNet should be the same but are: ${serializedNet.trainOpts.momentum}`);
assert.equal(trainingOpts.momentum, serializedNet.trainOpts.momentum, `trainingOpts are: ${trainingOpts.momentum} serializedNet should be the same but are: ${serializedNet.trainOpts.momentum}`);
});

it('training options callback', () => {
assert.equal(trainingOpts.callback, serializedNet.trainOpts.callback, `trainingOpts.are: ${trainingOpts.callback} serializedNet should be the same but are: ${serializedNet.trainOpts.callback}`);
assert.equal(trainingOpts.callback, serializedNet.trainOpts.callback, `trainingOpts are: ${trainingOpts.callback} serializedNet should be the same but are: ${serializedNet.trainOpts.callback}`);
});

it('training options callbackPeriod', () => {
assert.equal(trainingOpts.callbackPeriod, serializedNet.trainOpts.callbackPeriod, `trainingOpts.are: ${trainingOpts.callbackPeriod} serializedNet should be the same but are: ${serializedNet.trainOpts.callbackPeriod}`);
assert.equal(trainingOpts.callbackPeriod, serializedNet.trainOpts.callbackPeriod, `trainingOpts are: ${trainingOpts.callbackPeriod} serializedNet should be the same but are: ${serializedNet.trainOpts.callbackPeriod}`);
});

it('training options timeout', () => {
assert.equal(trainingOpts.timeout, serializedNet.trainOpts.timeout, `trainingOpts.are: ${trainingOpts.timeout} serializedNet should be the same but are: ${serializedNet.trainOpts.timeout}`);
assert.equal(trainingOpts.timeout, serializedNet.trainOpts.timeout, `trainingOpts are: ${trainingOpts.timeout} serializedNet should be the same but are: ${serializedNet.trainOpts.timeout}`);
});
});
});
Expand All @@ -192,3 +197,85 @@ describe('JSON', () => {
})
});
});


describe('default net json', () => {
const originalNet = new NeuralNetwork();

originalNet.train([
{
input: {'0': Math.random(), b: Math.random()},
output: {c: Math.random(), '0': Math.random()}
}, {
input: {'0': Math.random(), b: Math.random()},
output: {c: Math.random(), '0': Math.random()}
}
]);

const serialized = originalNet.toJSON();
const serializedNet = new NeuralNetwork()
.fromJSON(
JSON.parse(
JSON.stringify(serialized)
)
);

const input = {'0' : Math.random(), b: Math.random()};

describe('.trainOpts', () => {
it('training options iterations', () => {
assert.equal(originalNet.trainOpts.iterations, serializedNet.trainOpts.iterations, `originalNet.trainOpts are: ${originalNet.trainOpts.iterations} serializedNet should be the same but are: ${serializedNet.trainOpts.iterations}`);
});

it('training options errorThresh', () => {
assert.equal(originalNet.trainOpts.errorThresh, serializedNet.trainOpts.errorThresh, `originalNet.trainOpts are: ${originalNet.trainOpts.errorThresh} serializedNet should be the same but are: ${serializedNet.trainOpts.errorThresh}`);
});

it('training options log', () => {
// Should have inflated to console.log
assert.equal(originalNet.trainOpts.log, serializedNet.trainOpts.log, `log are: ${originalNet.trainOpts.log} serializedNet should be the same but are: ${serializedNet.trainOpts.log}`);
});

it('training options logPeriod', () => {
assert.equal(originalNet.trainOpts.logPeriod, serializedNet.trainOpts.logPeriod, `originalNet.trainOpts are: ${originalNet.trainOpts.logPeriod} serializedNet should be the same but are: ${serializedNet.trainOpts.logPeriod}`);
});

it('training options learningRate', () => {
assert.equal(originalNet.trainOpts.learningRate, serializedNet.trainOpts.learningRate, `originalNet.trainOpts are: ${originalNet.trainOpts.learningRate} serializedNet should be the same but are: ${serializedNet.trainOpts.learningRate}`);
});

it('training options momentum', () => {
assert.equal(originalNet.trainOpts.momentum, serializedNet.trainOpts.momentum, `originalNet.trainOpts are: ${originalNet.trainOpts.momentum} serializedNet should be the same but are: ${serializedNet.trainOpts.momentum}`);
});

it('training options callback', () => {
assert.equal(originalNet.trainOpts.callback, serializedNet.trainOpts.callback, `originalNet.trainOpts are: ${originalNet.trainOpts.callback} serializedNet should be the same but are: ${serializedNet.trainOpts.callback}`);
});

it('training options callbackPeriod', () => {
assert.equal(originalNet.trainOpts.callbackPeriod, serializedNet.trainOpts.callbackPeriod, `originalNet.trainOpts are: ${originalNet.trainOpts.callbackPeriod} serializedNet should be the same but are: ${serializedNet.trainOpts.callbackPeriod}`);
});

it('training options timeout', () => {
console.log(originalNet.trainOpts.timeout);
console.log(serializedNet.trainOpts.timeout);
assert.equal(originalNet.trainOpts.timeout, serializedNet.trainOpts.timeout, `originalNet.trainOpts are: ${originalNet.trainOpts.timeout} serializedNet should be the same but are: ${serializedNet.trainOpts.timeout}`);
});
});

it('can run originalNet, and serializedNet, with same output', () => {
const output1 = originalNet.run(input);
const output2 = serializedNet.run(input);
assert.deepEqual(output2, output1,
'loading json serialized network failed');
});

it('if json.trainOpts is not set, ._updateTrainingOptions() is not called and activation defaults to sigmoid', () => {
const net = new NeuralNetwork();
net._updateTrainingOptions = () => {
throw new Error('_updateTrainingOptions was called');
};
net.fromJSON({ sizes: [], layers: [] });
assert(net.activation === 'sigmoid');
})
})