Skip to content

Fix metric test failures #414

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Feb 12, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 4 additions & 2 deletions pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@
<maven.javadoc.skip>true</maven.javadoc.skip>
<maven.source.skip>true</maven.source.skip>
<gpg.skip>true</gpg.skip>
<spotless.version>2.11.1</spotless.version>
<spotless.version>2.20.2</spotless.version>
</properties>

<repositories>
Expand Down Expand Up @@ -371,7 +371,9 @@

<lineEndings/>
<java>
<googleJavaFormat/>
<googleJavaFormat>
<version>1.14.0</version>
</googleJavaFormat>

<removeUnusedImports/>
</java>
Expand Down
2 changes: 1 addition & 1 deletion tensorflow-core/pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -43,7 +43,7 @@

Bumped to newer version to patch a CVE only present in protobuf-java
-->
<protobuf.version>3.19.2</protobuf.version>
<protobuf.version>3.19.4</protobuf.version>

<native.classifier>${javacpp.platform}${javacpp.platform.extension}</native.classifier>
<javacpp.build.skip>false</javacpp.build.skip> <!-- To skip execution of build.sh: -Djavacpp.build.skip=true -->
Expand Down
2 changes: 1 addition & 1 deletion tensorflow-framework/pom.xml
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@
<configuration>
<forkCount>1</forkCount>
<reuseForks>false</reuseForks>
<argLine>-Xmx2G -XX:MaxPermSize=256m</argLine>
<argLine>-Xmx2G</argLine>
<includes>
<include>**/*Test.java</include>
</includes>
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,6 @@
import org.tensorflow.ndarray.Shape;
import org.tensorflow.op.Op;
import org.tensorflow.op.Ops;
import org.tensorflow.op.random.RandomUniform;
import org.tensorflow.types.TFloat32;
import org.tensorflow.types.TInt64;

Expand All @@ -39,11 +38,11 @@ public void testValueIsIdempotent() {
PrecisionAtRecall<TFloat32> instance = new PrecisionAtRecall<>(0.7f, 1001L, TFloat32.class);

Operand<TFloat32> predictions =
tf.random.randomUniform(
tf.constant(Shape.of(10, 3)), TFloat32.class, RandomUniform.seed(1L));
tf.random.statelessRandomUniform(
tf.constant(Shape.of(10, 3)), tf.constant(new long[] {1L, 0L}), TFloat32.class);
Operand<TFloat32> labels =
tf.random.randomUniform(
tf.constant(Shape.of(10, 3)), TFloat32.class, RandomUniform.seed(1L));
tf.random.statelessRandomUniform(
tf.constant(Shape.of(10, 3)), tf.constant(new long[] {1L, 0L}), TFloat32.class);

Op update = instance.updateState(tf, labels, predictions, null);

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,6 @@
import org.tensorflow.ndarray.Shape;
import org.tensorflow.op.Op;
import org.tensorflow.op.Ops;
import org.tensorflow.op.random.RandomUniform;
import org.tensorflow.types.TFloat32;
import org.tensorflow.types.TFloat64;
import org.tensorflow.types.TInt32;
Expand All @@ -39,11 +38,11 @@ public void testValueIsIdempotent() {
Precision<TFloat64> instance =
new Precision<>(new float[] {0.3f, 0.72f}, 1001L, TFloat64.class);
Operand<TFloat32> predictions =
tf.random.randomUniform(
tf.constant(Shape.of(10, 3)), TFloat32.class, RandomUniform.seed(1001L));
tf.random.statelessRandomUniform(
tf.constant(Shape.of(10, 3)), tf.constant(new long[] {1001L, 0L}), TFloat32.class);
Operand<TFloat32> labels =
tf.random.randomUniform(
tf.constant(Shape.of(10, 3)), TFloat32.class, RandomUniform.seed(1001L));
tf.random.statelessRandomUniform(
tf.constant(Shape.of(10, 3)), tf.constant(new long[] {1001L, 0L}), TFloat32.class);

Op update = instance.updateState(tf, labels, predictions, null);

Expand Down Expand Up @@ -81,7 +80,11 @@ public void testUnweightedAllIncorrect() {
Precision<TFloat32> instance = new Precision<>(0.5f, 1001L, TFloat32.class);

Operand<TInt32> predictions =
tf.random.randomUniformInt(tf.constant(Shape.of(100, 1)), tf.constant(0), tf.constant(2));
tf.random.statelessMultinomial(
tf.constant(new float[][] {{0.5f, 0.5f}}),
tf.constant(100),
tf.constant(new long[] {1001L, 0L}),
TInt32.class);
Operand<TInt32> labels = tf.math.sub(tf.constant(1), predictions);
Op update = instance.updateState(tf, labels, predictions, null);
session.run(update);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,6 @@
import org.tensorflow.ndarray.Shape;
import org.tensorflow.op.Op;
import org.tensorflow.op.Ops;
import org.tensorflow.op.random.RandomUniform;
import org.tensorflow.types.TFloat32;
import org.tensorflow.types.TInt64;

Expand All @@ -39,11 +38,11 @@ public void testValueIsIdempotent() {
RecallAtPrecision<TFloat32> instance = new RecallAtPrecision<>(0.7f, 1001L, TFloat32.class);

Operand<TFloat32> predictions =
tf.random.randomUniform(
tf.constant(Shape.of(10, 3)), TFloat32.class, RandomUniform.seed(1L));
tf.random.statelessRandomUniform(
tf.constant(Shape.of(10, 3)), tf.constant(new long[] {1L, 0L}), TFloat32.class);
Operand<TFloat32> labels =
tf.random.randomUniform(
tf.constant(Shape.of(10, 3)), TFloat32.class, RandomUniform.seed(1L));
tf.random.statelessRandomUniform(
tf.constant(Shape.of(10, 3)), tf.constant(new long[] {1L, 0L}), TFloat32.class);
labels = tf.math.mul(labels, tf.constant(2.0f));

Op update = instance.updateState(tf, labels, predictions);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -36,9 +36,11 @@ public void testValueIsIdempotent() {
Recall<TFloat32> instance = new Recall<>(new float[] {0.3f, 0.72f}, 1001L, TFloat32.class);

Operand<TFloat32> predictions =
tf.random.randomUniform(tf.constant(Shape.of(10, 3)), TFloat32.class);
tf.random.statelessRandomUniform(
tf.constant(Shape.of(10, 3)), tf.constant(new long[] {1L, 0L}), TFloat32.class);
Operand<TFloat32> labels =
tf.random.randomUniform(tf.constant(Shape.of(10, 3)), TFloat32.class);
tf.random.statelessRandomUniform(
tf.constant(Shape.of(10, 3)), tf.constant(new long[] {1L, 0L}), TFloat32.class);
Op update = instance.updateState(tf, labels, predictions, null);

for (int i = 0; i < 10; i++) session.run(update);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,6 @@
import org.tensorflow.ndarray.Shape;
import org.tensorflow.op.Op;
import org.tensorflow.op.Ops;
import org.tensorflow.op.random.RandomUniform;
import org.tensorflow.types.TFloat32;
import org.tensorflow.types.TFloat64;
import org.tensorflow.types.TInt64;
Expand All @@ -40,11 +39,11 @@ public void testValueIsIdempotent() {
SensitivityAtSpecificity<TFloat32> instance =
new SensitivityAtSpecificity<>(0.7f, 1001L, TFloat32.class);
Operand<TFloat32> predictions =
tf.random.randomUniform(
tf.constant(Shape.of(10, 3)), TFloat32.class, RandomUniform.seed(1L));
tf.random.statelessRandomUniform(
tf.constant(Shape.of(10, 3)), tf.constant(new long[] {1L, 0L}), TFloat32.class);
Operand<TFloat32> labels =
tf.random.randomUniform(
tf.constant(Shape.of(10, 3)), TFloat32.class, RandomUniform.seed(1L));
tf.random.statelessRandomUniform(
tf.constant(Shape.of(10, 3)), tf.constant(new long[] {1L, 0L}), TFloat32.class);
labels = tf.math.mul(labels, tf.constant(2.0f));

// instance.setDebug(session.getGraphSession());
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,6 @@
import org.tensorflow.ndarray.Shape;
import org.tensorflow.op.Op;
import org.tensorflow.op.Ops;
import org.tensorflow.op.random.RandomUniform;
import org.tensorflow.types.TFloat32;
import org.tensorflow.types.TFloat64;
import org.tensorflow.types.TInt32;
Expand All @@ -42,11 +41,11 @@ public void testValueIsIdempotent() {
new SpecificityAtSensitivity<>(0.7f, 1001L, TFloat32.class);

Operand<TFloat32> predictions =
tf.random.randomUniform(
tf.constant(Shape.of(10, 3)), TFloat32.class, RandomUniform.seed(1L));
tf.random.statelessRandomUniform(
tf.constant(Shape.of(10, 3)), tf.constant(new long[] {1L, 0L}), TFloat32.class);
Operand<TFloat32> labels =
tf.random.randomUniform(
tf.constant(Shape.of(10, 3)), TFloat32.class, RandomUniform.seed(1L));
tf.random.statelessRandomUniform(
tf.constant(Shape.of(10, 3)), tf.constant(new long[] {1L, 0L}), TFloat32.class);

// instance.setDebug(session.getGraphSession());
Op update = instance.updateState(tf, labels, predictions, null);
Expand Down