Skip to content

Add libsvm dataset support #32

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Dec 22, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
53 changes: 53 additions & 0 deletions tensorflow_io/libsvm/BUILD
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
licenses(["notice"]) # Apache 2.0

package(default_visibility = ["//visibility:public"])

cc_binary(
name = "python/ops/_libsvm_ops.so",
srcs = [
"kernels/decode_libsvm_op.cc",
"ops/libsvm_ops.cc",
],
linkshared = 1,
deps = [
"@local_config_tf//:libtensorflow_framework",
"@local_config_tf//:tf_header_lib",
],
copts = ["-pthread", "-std=c++11", "-D_GLIBCXX_USE_CXX11_ABI=0", "-DNDEBUG"]
)

py_library(
name = "libsvm_ops_py",
srcs = [
"python/ops/libsvm_dataset_ops.py",
],
data = [
":python/ops/_libsvm_ops.so",
],
srcs_version = "PY2AND3",
)

py_test(
name = "decode_libsvm_op_test",
srcs = [
"python/kernel_tests/decode_libsvm_op_test.py"
],
main = "python/kernel_tests/decode_libsvm_op_test.py",
deps = [
":libsvm_ops_py",
],
srcs_version = "PY2AND3",
)

py_library(
name = "libsvm_py",
srcs = ([
"__init__.py",
"python/__init__.py",
"python/ops/__init__.py",
]),
deps = [
":libsvm_ops_py"
],
srcs_version = "PY2AND3",
)
32 changes: 32 additions & 0 deletions tensorflow_io/libsvm/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,32 @@
# Copyright 2016 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""LibSVM Dataset.

@@make_libsvm_dataset
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from tensorflow.contrib.libsvm.python.ops.libsvm_dataset_ops import make_libsvm_dataset

from tensorflow.python.util.all_util import remove_undocumented

_allowed_symbols = [
"make_libsvm_dataset",
]

remove_undocumented(__name__)
168 changes: 168 additions & 0 deletions tensorflow_io/libsvm/kernels/decode_libsvm_op.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,168 @@
/* Copyright 2015 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/core/framework/op_kernel.h"
#include "tensorflow/core/framework/tensor.h"
#include "tensorflow/core/framework/tensor_shape.h"
#include "tensorflow/core/framework/types.h"
#include "tensorflow/core/lib/core/errors.h"
#include "tensorflow/core/lib/strings/numbers.h"
#include "tensorflow/core/lib/strings/str_util.h"

namespace tensorflow {

template <typename T, typename Tlabel>
class DecodeLibsvmOp : public OpKernel {
public:
explicit DecodeLibsvmOp(OpKernelConstruction* ctx) : OpKernel(ctx) {
OP_REQUIRES_OK(ctx, ctx->GetAttr("num_features", &num_features_));
OP_REQUIRES(ctx, (num_features_ >= 1),
errors::InvalidArgument("Invalid number of features \"",
num_features_, "\""));
}

void Compute(OpKernelContext* ctx) override {
const Tensor* input_tensor;
OP_REQUIRES_OK(ctx, ctx->input("input", &input_tensor));
const auto& input_flat = input_tensor->flat<string>();

Tensor* label_tensor;
OP_REQUIRES_OK(
ctx, ctx->allocate_output(0, input_tensor->shape(), &label_tensor));
auto label = label_tensor->flat<Tlabel>();

std::vector<T> out_values;
std::vector<std::pair<int64, int64>> out_indices;
for (int i = 0; i < input_flat.size(); ++i) {
StringPiece line(input_flat(i));
str_util::RemoveWhitespaceContext(&line);

StringPiece piece;
OP_REQUIRES(ctx, str_util::ConsumeNonWhitespace(&line, &piece),
errors::InvalidArgument("No label found for input[", i,
"]: \"", input_flat(i), "\""));

Tlabel label_value;
OP_REQUIRES(ctx,
strings::SafeStringToNumeric<Tlabel>(piece, &label_value),
errors::InvalidArgument("Label format incorrect: ", piece));

label(i) = label_value;

str_util::RemoveLeadingWhitespace(&line);
while (str_util::ConsumeNonWhitespace(&line, &piece)) {
size_t p = piece.find(':');
OP_REQUIRES(ctx, (p != StringPiece::npos),
errors::InvalidArgument("Invalid feature \"", piece, "\""));

int64 feature_index;
OP_REQUIRES(
ctx, strings::safe_strto64(piece.substr(0, p), &feature_index),
errors::InvalidArgument("Feature format incorrect: ", piece));
OP_REQUIRES(ctx, (feature_index >= 0),
errors::InvalidArgument(
"Feature index should be >= 0, got ", feature_index));

T feature_value;
OP_REQUIRES(

ctx,
strings::SafeStringToNumeric<T>(piece.substr(p + 1),
&feature_value),
errors::InvalidArgument("Feature format incorrect: ", piece));

out_values.emplace_back(feature_value);
out_indices.emplace_back(std::pair<int64, int64>(i, feature_index));

str_util::RemoveLeadingWhitespace(&line);
}
}

Tensor* indices_tensor;
OP_REQUIRES_OK(ctx, ctx->allocate_output(
1,
TensorShape({static_cast<int64>(out_indices.size()),
input_tensor->shape().dims() + 1}),
&indices_tensor));
auto indices = indices_tensor->matrix<int64>();
// Translate flat index to shaped index like np.unravel_index
// Calculate factors for each dimension
std::vector<int64> factors(input_tensor->shape().dims());
factors[input_tensor->shape().dims() - 1] = 1;
for (int j = input_tensor->shape().dims() - 2; j >= 0; j--) {
factors[j] = factors[j + 1] * input_tensor->shape().dim_size(j + 1);
}
for (int i = 0; i < out_indices.size(); i++) {
indices(i, 0) = out_indices[i].first;
int64 value = out_indices[i].first;
for (int j = 0; j < input_tensor->shape().dims(); j++) {
indices(i, j) = value / factors[j];
value = value % factors[j];
}
indices(i, input_tensor->shape().dims()) = out_indices[i].second;
}

Tensor* values_tensor;
OP_REQUIRES_OK(ctx,
ctx->allocate_output(
2, TensorShape({static_cast<int64>(out_values.size())}),
&values_tensor));
auto values = values_tensor->vec<T>();
std::copy_n(out_values.begin(), out_values.size(), &values(0));

Tensor* shape_tensor;
OP_REQUIRES_OK(ctx, ctx->allocate_output(
3, TensorShape({input_tensor->shape().dims() + 1}),
&shape_tensor));
auto shape = shape_tensor->flat<int64>();
for (int i = 0; i < input_tensor->shape().dims(); i++) {
shape(i) = input_tensor->shape().dim_size(i);
}
shape(input_tensor->shape().dims()) = num_features_;
}

private:
int64 num_features_;
};

#define REGISTER_KERNEL(type) \
REGISTER_KERNEL_BUILDER(Name("DecodeLibsvm") \
.Device(DEVICE_CPU) \
.TypeConstraint<type>("dtype") \
.TypeConstraint<int32>("label_dtype"), \
DecodeLibsvmOp<type, int32>); \
REGISTER_KERNEL_BUILDER(Name("DecodeLibsvm") \
.Device(DEVICE_CPU) \
.TypeConstraint<type>("dtype") \
.TypeConstraint<int64>("label_dtype"), \
DecodeLibsvmOp<type, int64>); \
REGISTER_KERNEL_BUILDER(Name("DecodeLibsvm") \
.Device(DEVICE_CPU) \
.TypeConstraint<type>("dtype") \
.TypeConstraint<float>("label_dtype"), \
DecodeLibsvmOp<type, float>); \
REGISTER_KERNEL_BUILDER(Name("DecodeLibsvm") \
.Device(DEVICE_CPU) \
.TypeConstraint<type>("dtype") \
.TypeConstraint<double>("label_dtype"), \
DecodeLibsvmOp<type, double>);

REGISTER_KERNEL(float);
REGISTER_KERNEL(double);
REGISTER_KERNEL(int32);
REGISTER_KERNEL(int64);
#undef REGISTER_KERNEL

} // namespace tensorflow
58 changes: 58 additions & 0 deletions tensorflow_io/libsvm/ops/libsvm_ops.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
/* Copyright 2017 The TensorFlow Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
==============================================================================*/

#include "tensorflow/core/framework/common_shape_fns.h"
#include "tensorflow/core/framework/op.h"
#include "tensorflow/core/framework/shape_inference.h"

namespace tensorflow {

using shape_inference::InferenceContext;

REGISTER_OP("DecodeLibsvm")
.Input("input: string")
.Output("label: label_dtype")
.Output("feature_indices: int64")
.Output("feature_values: dtype")
.Output("feature_shape: int64")
.Attr("dtype: {float, double, int32, int64} = DT_FLOAT")
.Attr("label_dtype: {float, double, int32, int64} = DT_INT64")
.Attr("num_features: int >= 1")
.SetShapeFn([](InferenceContext* c) {
c->set_output(0, c->input(0));

c->set_output(1, c->Matrix(InferenceContext::kUnknownDim,
InferenceContext::kUnknownDim));
c->set_output(2, c->Vector(InferenceContext::kUnknownDim));
c->set_output(3, c->Vector(InferenceContext::kUnknownDim));

return Status::OK();
})

.Doc(R"doc(
Convert LibSVM input to tensors. The output consists of
a label and a feature tensor. The shape of the label tensor
is the same as input and the shape of the feature tensor is
`[input_shape, num_features]`.

input: Each string is a record in the LibSVM.
label: A tensor of the same shape as input.
feature_indices: A 2-D int64 tensor of dense_shape [N, ndims].
feature_values: A 1-D tensor of any type and dense_shape [N].
feature_shape: A 1-D int64 tensor of dense_shape [ndims].
num_features: The number of features.
)doc");

} // namespace tensorflow
Empty file.
71 changes: 71 additions & 0 deletions tensorflow_io/libsvm/python/kernel_tests/decode_libsvm_op_test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,71 @@
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for DecodeLibsvm op."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import numpy as np

from tensorflow_io.libsvm.python.ops import libsvm_dataset_ops
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import sparse_ops
from tensorflow.python.platform import test


class DecodeLibsvmOpTest(test.TestCase):

def testBasic(self):
with self.cached_session() as sess:
content = [
"1 1:3.4 2:0.5 4:0.231", "1 2:2.5 3:inf 5:0.503",
"2 3:2.5 2:nan 1:0.105"
]
sparse_features, labels = libsvm_dataset_ops.decode_libsvm(
content, num_features=6)
features = sparse_ops.sparse_tensor_to_dense(
sparse_features, validate_indices=False)

self.assertAllEqual(labels.get_shape().as_list(), [3])

features, labels = sess.run([features, labels])
self.assertAllEqual(labels, [1, 1, 2])
self.assertAllClose(
features, [[0, 3.4, 0.5, 0, 0.231, 0], [0, 0, 2.5, np.inf, 0, 0.503],
[0, 0.105, np.nan, 2.5, 0, 0]])

def testNDimension(self):
with self.cached_session() as sess:
content = [["1 1:3.4 2:0.5 4:0.231", "1 1:3.4 2:0.5 4:0.231"],
["1 2:2.5 3:inf 5:0.503", "1 2:2.5 3:inf 5:0.503"],
["2 3:2.5 2:nan 1:0.105", "2 3:2.5 2:nan 1:0.105"]]
sparse_features, labels = libsvm_dataset_ops.decode_libsvm(
content, num_features=6, label_dtype=dtypes.float64)
features = sparse_ops.sparse_tensor_to_dense(
sparse_features, validate_indices=False)

self.assertAllEqual(labels.get_shape().as_list(), [3, 2])

features, labels = sess.run([features, labels])
self.assertAllEqual(labels, [[1, 1], [1, 1], [2, 2]])
self.assertAllClose(
features, [[[0, 3.4, 0.5, 0, 0.231, 0], [0, 3.4, 0.5, 0, 0.231, 0]], [
[0, 0, 2.5, np.inf, 0, 0.503], [0, 0, 2.5, np.inf, 0, 0.503]
], [[0, 0.105, np.nan, 2.5, 0, 0], [0, 0.105, np.nan, 2.5, 0, 0]]])


if __name__ == "__main__":
test.main()
Empty file.
Loading