Skip to content
205 changes: 202 additions & 3 deletions library/core/src/option.rs
Original file line number Diff line number Diff line change
Expand Up @@ -50,8 +50,8 @@
//! the optional owned box, [`Option`]`<`[`Box<T>`]`>`.
//!
//! The following example uses [`Option`] to create an optional box of
//! [`i32`]. Notice that in order to use the inner [`i32`] value first, the
//! `check_optional` function needs to use pattern matching to
//! [`i32`]. Notice that in order to use the inner [`i32`] value, the
//! `check_optional` function first needs to use pattern matching to
//! determine whether the box has a value (i.e., it is [`Some(...)`][`Some`]) or
//! not ([`None`]).
//!
Expand Down Expand Up @@ -90,6 +90,205 @@
//! from `Some::<T>(_)` to `T` (but transmuting `None::<T>` to `T`
//! is undefined behaviour).
//!
//! # Method overview
//!
//! In addition to working with pattern matching, [`Option`] provides a wide
//! variety of different methods.
//!
//! ## Querying the variant
//!
//! The [`is_some`] and [`is_none`] methods return [`true`] if the [`Option`]
//! is [`Some`] or [`None`], respectively.
//!
//! [`is_some`]: Option::is_some
//! [`is_none`]: Option::is_none
//!
//! ## Adapters for working with references
//!
//! * [`as_ref`] converts from `&Option<T>` to `Option<&T>`
//! * [`as_mut`] converts from `&mut Option<T>` to `Option<&mut T>`
//! * [`as_deref`] converts from `&Option<T>` to `Option<&T::Target>`
//! * [`as_deref_mut`] converts from `&mut Option<T>` to `Option<&mut T::Target>`
//! * [`as_pin_ref`] converts from [`&Pin`]`<Option<T>>` to `Option<`[`Pin`]`<&T>>`
//! * [`as_pin_mut`] converts from [`&mut Pin`]`<Option<T>>` to `Option<`[`Pin`]`<&mut T>>`
//!
//! [`&mut Pin`]: crate::pin::Pin
//! [`&Pin`]: crate::pin::Pin
//! [`as_deref`]: Option::as_deref
//! [`as_deref_mut`]: Option::as_deref_mut
//! [`as_mut`]: Option::as_mut
//! [`as_pin_ref`]: Option::as_pin_ref
//! [`as_pin_mut`]: Option::as_pin_mut
//! [`as_ref`]: Option::as_ref
//! [`Pin`]: crate::pin::Pin
//!
//! ## Extracting the contained value
//!
//! These methods extract the contained value in an [`Option`] when it is
//! the [`Some`] variant. If the [`Option`] is [`None`]:
//!
//! * [`expect`] panics with a provided custom message
//! * [`unwrap`] panics with a generic message
//! * [`unwrap_or`] returns the provided default value
//! * [`unwrap_or_default`] returns the default value of the type `T`
//! (which must implement the [`Default`] trait)
//! * [`unwrap_or_else`] evaluates a provided function
//!
//! [`Default`]: crate::default::Default
//! [`expect`]: Option::expect
//! [`unwrap`]: Option::unwrap
//! [`unwrap_or`]: Option::unwrap_or
//! [`unwrap_or_default`]: Option::unwrap_or_default
//! [`unwrap_or_else`]: Option::unwrap_or_else
//!
//! ## Transforming contained values
//!
//! * [`map`] transforms [`Some<T>`] to [`Some<U>`] using the provided
//! function
//! * [`map_or`] transforms [`Some<T>`] to a value of `U` using the
//! provided function, or transforms [`None`] to a provided default value
//! of `U`
//! * [`map_or_else`] transforms [`Some<T>`] to [`Some<U>`] using the
//! provided function, or transforms [`None`] to a value of `U` using
//! another provided function
//! * [`ok_or`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
//! [`Err(err)`] using the provided default `err` value
//! * [`ok_or_else`] transforms [`Some(v)`] to [`Ok(v)`], and [`None`] to
//! a value of [`Err<E>`] using the provided function
//!
//! [`Err(err)`]: Err
//! [`map`]: Option::map
//! [`map_or`]: Option::map_or
//! [`map_or_else`]: Option::map_or_else
//! [`Ok(v)`]: Ok
//! [`ok_or`]: Option::ok_or
//! [`ok_or_else`]: Option::ok_or_else
//! [`Some(v)`]: Some
//!
//! ## Boolean operators
//!
//! These methods treat the [`Option`] as a boolean value, where [`Some`]
//! acts like [`true`] and [`None`] acts like [`false`]. There are two
//! categories of these methods: ones that take an [`Option`] as input, and
//! ones that take a function as input (to be lazily evaluated).
//!
//! The [`and`], [`or`], and [`xor`] methods take another [`Option`] as
//! input, and produce an [`Option`] as output. Only the [`and`] method can
//! produce an [`Option<U>`] value having a different inner type `U` than
//! [`Option<T>`].
//!
//! | method | self | input | output |
//! |---------|-----------|-----------|-----------|
//! | [`and`] | N/A | `None` | `None` |
//! | [`and`] | `Some(x)` | `Some(y)` | `Some(y)` |
//! | [`or`] | `None` | `None` | `None` |
//! | [`or`] | `None` | `Some(y)` | `Some(y)` |
//! | [`or`] | `Some(x)` | N/A | `Some(x)` |
//! | [`xor`] | `None` | `None` | `None` |
//! | [`xor`] | `None` | `Some(y)` | `Some(y)` |
//! | [`xor`] | `Some(x)` | `None` | `Some(x)` |
//! | [`xor`] | `Some(x)` | `Some(y)` | `None` |
//!
//! The [`and_then`], [`filter`], and [`or_else`] methods take a function
//! as input, and only evaluate the function when they need to produce a
//! new value. [`and_then`] and [`or_else`] take a function that produces
//! another [`Option`] value, while [`filter`] takes a predicate that is
//! used to decide whether to pass the [`Some`] value through. Only the
//! [`and_then`] method can produce an [`Option<U>`] value having a
//! different inner type `U` than [`Option<T>`].
//!
//! | method | self | function input | function result | output |
//! |--------------|-----------|----------------|-----------------|-----------|
//! | [`and_then`] | `None` | N/A | (not evaluated) | `None` |
//! | [`and_then`] | `Some(x)` | `x` | `None` | `None` |
//! | [`and_then`] | `Some(x)` | `x` | `Some(y)` | `Some(y)` |
//! | [`filter`] | `None` | N/A | (not evaluated) | `None` |
//! | [`filter`] | `Some(x)` | `x` | `false` | `None` |
//! | [`filter`] | `Some(x)` | `x` | `true` | `Some(x)` |
//! | [`or_else`] | `None` | N/A | `None` | `None` |
//! | [`or_else`] | `None` | N/A | `Some(y)` | `Some(y)` |
//! | [`or_else`] | `Some(x)` | N/A | (not evaluated) | `Some(x)` |
//!
//! [`and`]: Option::and
//! [`and_then`]: Option::and_then
//! [`filter`]: Option::filter
//! [`or`]: Option::or
//! [`or_else`]: Option::or_else
//! [`xor`]: Option::xor
//!
//! ## Iterators
//!
//! An [`Option`] can be iterated over. This can be helpful if you need an
//! iterator that is conditionally empty. The iterator will either produce
//! a single value (when the [`Option`] is [`Some`]), or produce no values
//! (when the [`Option`] is [`None`]). For example, [`into_iter`] acts like
//! [`once(v)`] if the [`Option`] is [`Some(v)`], and like [`empty()`] if
//! the [`Option`] is [`None`].
//!
//! Iterators over [`Option`] come in three types:
//!
//! * [`into_iter`] consumes the [`Option`] and produces the contained
//! value
//! * [`iter`] produces an immutable reference of type `&T` to the
//! contained value
//! * [`iter_mut`] produces a mutable reference of type `&mut T` to the
//! contained value
//!
//! [`Option`] implements the [`FromIterator`] trait, which allows an
//! iterator over [`Option`] values to be collected into an [`Option`] of a
//! collection of each contained value of the original [`Option`] values,
//! or [`None`] if any of the elements was [`None`].
//!
//! [`empty()`]: crate::iter::empty
//! [`FromIterator`]: Option#impl-FromIterator%3COption%3CA%3E%3E
//! [`into_iter`]: Option::into_iter
//! [`iter`]: Option::iter
//! [`iter_mut`]: Option::iter_mut
//! [`once(v)`]: crate::iter::once
//! [`Some(v)`]: Some
//!
//! An iterator over [`Option`] can be useful when chaining iterators:
//!
//! ```
//! let yep = Some(42);
//! let nope = None;
//! let nums: Vec<i32> = (0..4).chain(yep.into_iter()).chain(4..8).collect();
//! assert_eq!(nums, [0, 1, 2, 3, 42, 4, 5, 6, 7]);
//! let nums: Vec<i32> = (0..4).chain(nope.into_iter()).chain(4..8).collect();
//! assert_eq!(nums, [0, 1, 2, 3, 4, 5, 6, 7]);
//! ```
//!
//! One reason to chain iterators in this way is that a function returning
//! `impl Iterator` must have all possible return values be of the same
//! concrete type. Chaining an iterated [`Option`] can help with that.
//!
//! ```
//! let yep = Some(42);
//! let nope = None;
//!
//! fn makeiter(opt: Option<i32>) -> impl Iterator<Item = i32> {
//! (0..4).chain(opt.into_iter()).chain(4..8)
//! }
//! println!("{:?}", makeiter(yep).collect::<Vec<_>>());
//! println!("{:?}", makeiter(nope).collect::<Vec<_>>());
//! ```
//!
//! If we try to do the same thing, but using pattern matching, we can't
//! return `impl Iterator` anymore because the concrete types of the return
//! values differ.
//!
//! ```compile_fail,E0308
//! # use std::iter::{empty, once};
//! // This won't compile because all possible returns from the function
//! // must have the same concrete type.
//! fn makeiter(opt: Option<i32>) -> impl Iterator<Item = i32> {
//! match opt {
//! Some(x) => return (0..4).chain(once(x)).chain(4..8),
//! None => return (0..4).chain(empty()).chain(4..8)
//! }
//! }
//! ```
//!
//! # Examples
//!
//! Basic pattern matching on [`Option`]:
Expand Down Expand Up @@ -1350,7 +1549,7 @@ impl<'a, T> From<&'a Option<T>> for Option<&'a T> {
///
/// Converts an `Option<`[`String`]`>` into an `Option<`[`usize`]`>`, preserving the original.
/// The [`map`] method takes the `self` argument by value, consuming the original,
/// so this technique uses `as_ref` to first take an `Option` to a reference
/// so this technique uses `from` to first take an `Option` to a reference
/// to the value inside the original.
///
/// [`map`]: Option::map
Expand Down
41 changes: 41 additions & 0 deletions library/core/src/result.rs
Original file line number Diff line number Diff line change
Expand Up @@ -224,6 +224,47 @@
//! [`Ok(T)`]: Ok
//! [`Err(E)`]: Err
//! [`io::Error`]: ../../std/io/struct.Error.html
//!
//! # Method overview
//!
//! ## Boolean operators
//!
//! These methods treat the [`Result`] as a boolean value, where [`Ok`]
//! acts like [`true`] and [`Err`] acts like [`false`]. There are two
//! categories of these methods: ones that take a [`Result`] as input, and
//! ones that take a function as input (to be lazily evaluated).
//!
//! The [`and`] and [`or`] methods take another [`Result`] as input, and
//! produce an [`Result`] as output. Only the [`and`] method can produce a
//! [`Result<U, E>`] value having a different inner type `U` than
//! [`Result<T, E>`].
//!
//! | method | self | input | output |
//! |---------|----------|----------|----------|
//! | [`and`] | N/A | `Err(e)` | `Err(e)` |
//! | [`and`] | `Ok(x)` | `Ok(y)` | `Ok(y)` |
//! | [`or`] | `Err(e)` | `Err(d)` | `Err(d)` |
//! | [`or`] | `Err(e)` | `Ok(y)` | `Ok(y)` |
//! | [`or`] | `Ok(x)` | N/A | `Ok(x)` |
//!
//! The [`and_then`] and [`or_else`] methods take a function as input, and
//! only evaluate the function when they need to produce a new value. Only
//! the [`and_then`] method can produce an [`Result<U, E>`] value having a
//! different inner type `U` than [`Result<T, E>`].
//!
//! | method | self | function input | function result | output |
//! |--------------|----------|----------------|-----------------|----------|
//! | [`and_then`] | `Err(e)` | N/A | (not evaluated) | `Err(e)` |
//! | [`and_then`] | `Ok(x)` | `x` | `Err(d)` | `Err(d)` |
//! | [`and_then`] | `Ok(x)` | `x` | `Ok(y)` | `Ok(y)` |
//! | [`or_else`] | `Err(e)` | `e` | `Err(d)` | `Err(d)` |
//! | [`or_else`] | `Err(e)` | `e` | `Ok(y)` | `Ok(y)` |
//! | [`or_else`] | `Ok(x)` | N/A | (not evaluated) | `Ok(x)` |
//!
//! [`and`]: Result::and
//! [`and_then`]: Result::and_then
//! [`or`]: Result::or
//! [`or_else`]: Result::or_else

#![stable(feature = "rust1", since = "1.0.0")]

Expand Down