Open
Description
When coco dataset has empty bbox annotation
following error occured.
How should I handle the empty bbox dataset in cocodataset
IndexError: Dimension out of range (expected to be in range of [-1, 0], but got 1)
[{'boxes': tensor([], device='cuda:1'), 'labels': tensor([], device='cuda:1', dtype=torch.int64), 'image_id': tensor([311877], device='cuda:1'), 'area': tensor([], device='cuda:1'), 'iscrowd': tensor([], device='cuda:1', dtype=torch.int64)}]
len_> 0
class CocoDataset(torch.utils.data.Dataset):
def __init__(self, root, annotation, transforms=None):
self.root = root
self.transforms = transforms
self.coco = COCO(annotation)
self.ids = list(sorted(self.coco.imgs.keys()))
def __getitem__(self, index):
# Own coco file
coco = self.coco
# Image ID
img_id = self.ids[index]
# List: get annotation id from coco
ann_ids = coco.getAnnIds(imgIds=img_id)
# Dictionary: target coco_annotation file for an image
coco_annotation = coco.loadAnns(ann_ids)
# path for input image
path = coco.loadImgs(img_id)[0]['file_name']
# open the input image
img = Image.open(os.path.join(self.root, path))
# number of objects in the image
num_objs = len(coco_annotation)
# Bounding boxes for objects
# In coco format, bbox = [xmin, ymin, width, height]
# In pytorch, the input should be [xmin, ymin, xmax, ymax]
boxes = []
for i in range(num_objs):
xmin = coco_annotation[i]['bbox'][0]
ymin = coco_annotation[i]['bbox'][1]
xmax = xmin + coco_annotation[i]['bbox'][2]
ymax = ymin + coco_annotation[i]['bbox'][3]
boxes.append([xmin, ymin, xmax, ymax])
boxes = torch.as_tensor(boxes, dtype=torch.float32)
# Labels (In my case, I only one class: target class or background)
labels = torch.ones((num_objs,), dtype=torch.int64)
# Tensorise img_id
img_id = torch.tensor([img_id])
# Size of bbox (Rectangular)
areas = []
for i in range(num_objs):
areas.append(coco_annotation[i]['area'])
areas = torch.as_tensor(areas, dtype=torch.float32)
# Iscrowd
iscrowd = torch.zeros((num_objs,), dtype=torch.int64)
# Annotation is in dictionary format
my_annotation = {}
my_annotation["boxes"] = boxes
my_annotation["labels"] = labels
my_annotation["image_id"] = img_id
my_annotation["area"] = areas
my_annotation["iscrowd"] = iscrowd
if self.transforms is not None:
img = self.transforms(img)
return img, my_annotation
def resize_boxes(boxes, original_size, new_size):
ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(new_size, original_size))
ratio_height, ratio_width = ratios
#print("=============================================================")
#print('ratio_height->',ratio_height,'ratio_width->',ratio_width,'boxes->',boxes)
print('len_>',len(boxes))
xmin, ymin, xmax, ymax = boxes.unbind(1)
xmin = xmin * ratio_width
xmax = xmax * ratio_width
ymin = ymin * ratio_height
ymax = ymax * ratio_height
return torch.stack((xmin, ymin, xmax, ymax), dim=1)