Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 12 additions & 10 deletions tests/ignite/metrics/test_epoch_metric.py
Original file line number Diff line number Diff line change
Expand Up @@ -159,34 +159,36 @@ def _test_distrib_integration(device=None):
device = idist.device() if idist.device().type != "xla" else "cpu"

rank = idist.get_rank()
torch.manual_seed(12)
torch.manual_seed(12 + rank)

n_iters = 60
s = 16
n_iters = 3
batch_size = 2
n_classes = 7

offset = n_iters * s
y_true = torch.randint(0, n_classes, size=(offset * idist.get_world_size(),), device=device)
y_preds = torch.rand(offset * idist.get_world_size(), n_classes, device=device)
y_true = torch.randint(0, n_classes, size=(n_iters * batch_size,), device=device)
y_preds = torch.rand(n_iters * batch_size, n_classes, device=device)

def update(engine, i):
return (
y_preds[i * s + rank * offset : (i + 1) * s + rank * offset, :],
y_true[i * s + rank * offset : (i + 1) * s + rank * offset],
y_preds[i * batch_size : (i + 1) * batch_size, :],
y_true[i * batch_size : (i + 1) * batch_size],
)

engine = Engine(update)

def assert_data_fn(all_preds, all_targets):
assert all_preds.equal(y_preds), f"{all_preds.shape} vs {y_preds.shape}"
assert all_targets.equal(y_true), f"{all_targets.shape} vs {y_true.shape}"
return (all_preds.argmax(dim=1) == all_targets).sum().item()

ep_metric = EpochMetric(assert_data_fn, check_compute_fn=False, device=device)
ep_metric.attach(engine, "epm")

data = list(range(n_iters))

engine.run(data=data, max_epochs=3)

y_preds = idist.all_gather(y_preds)
y_true = idist.all_gather(y_true)

assert engine.state.metrics["epm"] == (y_preds.argmax(dim=1) == y_true).sum().item()


Expand Down
40 changes: 22 additions & 18 deletions tests/ignite/metrics/test_recall.py
Original file line number Diff line number Diff line change
Expand Up @@ -430,22 +430,18 @@ def _test_distrib_integration_multiclass(device):

from ignite.engine import Engine

rank = idist.get_rank()
torch.manual_seed(12)

def _test(average, n_epochs, metric_device):
n_iters = 60
s = 16
batch_size = 16
n_classes = 7

offset = n_iters * s
y_true = torch.randint(0, n_classes, size=(offset * idist.get_world_size(),)).to(device)
y_preds = torch.rand(offset * idist.get_world_size(), n_classes).to(device)
y_true = torch.randint(0, n_classes, size=(n_iters * batch_size,)).to(device)
y_preds = torch.rand(n_iters * batch_size, n_classes).to(device)

def update(engine, i):
return (
y_preds[i * s + rank * offset : (i + 1) * s + rank * offset, :],
y_true[i * s + rank * offset : (i + 1) * s + rank * offset],
y_preds[i * batch_size : (i + 1) * batch_size, :],
y_true[i * batch_size : (i + 1) * batch_size],
)

engine = Engine(update)
Expand All @@ -457,6 +453,9 @@ def update(engine, i):
data = list(range(n_iters))
engine.run(data=data, max_epochs=n_epochs)

y_preds = idist.all_gather(y_preds)
y_true = idist.all_gather(y_true)

assert "re" in engine.state.metrics
assert re._updated is True
res = engine.state.metrics["re"]
Expand All @@ -475,7 +474,9 @@ def update(engine, i):
metric_devices = [torch.device("cpu")]
if device.type != "xla":
metric_devices.append(idist.device())
for _ in range(2):
rank = idist.get_rank()
for i in range(2):
torch.manual_seed(12 + rank + i)
for metric_device in metric_devices:
_test(average=False, n_epochs=1, metric_device=metric_device)
_test(average=False, n_epochs=2, metric_device=metric_device)
Expand All @@ -491,22 +492,20 @@ def _test_distrib_integration_multilabel(device):

from ignite.engine import Engine

rank = idist.get_rank()
torch.manual_seed(12)

def _test(average, n_epochs, metric_device):
n_iters = 60
s = 16
batch_size = 16
n_classes = 7

offset = n_iters * s
y_true = torch.randint(0, 2, size=(offset * idist.get_world_size(), n_classes, 6, 8)).to(device)
y_preds = torch.randint(0, 2, size=(offset * idist.get_world_size(), n_classes, 6, 8)).to(device)
y_true = torch.randint(0, 2, size=(n_iters * batch_size, n_classes, 6, 8)).to(device)
y_preds = torch.randint(0, 2, size=(n_iters * batch_size, n_classes, 6, 8)).to(device)

def update(engine, i):
return (
y_preds[i * s + rank * offset : (i + 1) * s + rank * offset, ...],
y_true[i * s + rank * offset : (i + 1) * s + rank * offset, ...],
y_preds[i * batch_size : (i + 1) * batch_size, ...],
y_true[i * batch_size : (i + 1) * batch_size, ...],
)

engine = Engine(update)
Expand All @@ -518,6 +517,9 @@ def update(engine, i):
data = list(range(n_iters))
engine.run(data=data, max_epochs=n_epochs)

y_preds = idist.all_gather(y_preds)
y_true = idist.all_gather(y_true)

assert "re" in engine.state.metrics
assert re._updated is True
res = engine.state.metrics["re"]
Expand All @@ -540,7 +542,9 @@ def update(engine, i):
metric_devices = ["cpu"]
if device.type != "xla":
metric_devices.append(idist.device())
for _ in range(2):
rank = idist.get_rank()
for i in range(2):
torch.manual_seed(12 + rank + i)
for metric_device in metric_devices:
_test(average=False, n_epochs=1, metric_device=metric_device)
_test(average=False, n_epochs=2, metric_device=metric_device)
Expand Down