You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
According to the doc: https://docs.pytorch.org/TensorRT/user_guide/mixed_precision.html We can convert model with this project where the param precision are explicitly said in the code. But when I train a model with torch AMP GradScaler where no value precision tagged in model code, Can we use this method to get a conerted chackpoint with best performance and inference speedup?
In fect, we had tried the torch pt->onnx-> tensorrt fp16 pipeline to convert pytorch AMP trained checkpoint into trt model format, but the inference results are noisey. while pt->onnx-> tensorrt fp32 pipeline will get a trt fp32 model the inference slower then what we need.