Skip to content

Refactor out coarsen tests #5474

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jun 21, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions setup.cfg
Original file line number Diff line number Diff line change
Expand Up @@ -151,6 +151,8 @@ ignore =
E501 # line too long - let black worry about that
E731 # do not assign a lambda expression, use a def
W503 # line break before binary operator
per-file-ignores =
xarray/tests/*.py:F401,F811
exclude=
.eggs
doc
Expand Down
301 changes: 301 additions & 0 deletions xarray/tests/test_coarsen.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,301 @@
import numpy as np
import pandas as pd
import pytest

import xarray as xr
from xarray import DataArray, Dataset, set_options

from . import assert_allclose, assert_equal, has_dask, requires_cftime
from .test_dataarray import da
from .test_dataset import ds


def test_coarsen_absent_dims_error(ds):
with pytest.raises(ValueError, match=r"not found in Dataset."):
ds.coarsen(foo=2)


@pytest.mark.parametrize("dask", [True, False])
@pytest.mark.parametrize(("boundary", "side"), [("trim", "left"), ("pad", "right")])
def test_coarsen_dataset(ds, dask, boundary, side):
if dask and has_dask:
ds = ds.chunk({"x": 4})

actual = ds.coarsen(time=2, x=3, boundary=boundary, side=side).max()
assert_equal(
actual["z1"], ds["z1"].coarsen(x=3, boundary=boundary, side=side).max()
)
# coordinate should be mean by default
assert_equal(
actual["time"], ds["time"].coarsen(time=2, boundary=boundary, side=side).mean()
)


@pytest.mark.parametrize("dask", [True, False])
def test_coarsen_coords(ds, dask):
if dask and has_dask:
ds = ds.chunk({"x": 4})

# check if coord_func works
actual = ds.coarsen(time=2, x=3, boundary="trim", coord_func={"time": "max"}).max()
assert_equal(actual["z1"], ds["z1"].coarsen(x=3, boundary="trim").max())
assert_equal(actual["time"], ds["time"].coarsen(time=2, boundary="trim").max())

# raise if exact
with pytest.raises(ValueError):
ds.coarsen(x=3).mean()
# should be no error
ds.isel(x=slice(0, 3 * (len(ds["x"]) // 3))).coarsen(x=3).mean()

# working test with pd.time
da = xr.DataArray(
np.linspace(0, 365, num=364),
dims="time",
coords={"time": pd.date_range("15/12/1999", periods=364)},
)
actual = da.coarsen(time=2).mean()


@requires_cftime
def test_coarsen_coords_cftime():
times = xr.cftime_range("2000", periods=6)
da = xr.DataArray(range(6), [("time", times)])
actual = da.coarsen(time=3).mean()
expected_times = xr.cftime_range("2000-01-02", freq="3D", periods=2)
np.testing.assert_array_equal(actual.time, expected_times)


@pytest.mark.parametrize(
"funcname, argument",
[
("reduce", (np.mean,)),
("mean", ()),
],
)
def test_coarsen_keep_attrs(funcname, argument):
global_attrs = {"units": "test", "long_name": "testing"}
da_attrs = {"da_attr": "test"}
attrs_coords = {"attrs_coords": "test"}
da_not_coarsend_attrs = {"da_not_coarsend_attr": "test"}

data = np.linspace(10, 15, 100)
coords = np.linspace(1, 10, 100)

ds = Dataset(
data_vars={
"da": ("coord", data, da_attrs),
"da_not_coarsend": ("no_coord", data, da_not_coarsend_attrs),
},
coords={"coord": ("coord", coords, attrs_coords)},
attrs=global_attrs,
)

# attrs are now kept per default
func = getattr(ds.coarsen(dim={"coord": 5}), funcname)
result = func(*argument)
assert result.attrs == global_attrs
assert result.da.attrs == da_attrs
assert result.da_not_coarsend.attrs == da_not_coarsend_attrs
assert result.coord.attrs == attrs_coords
assert result.da.name == "da"
assert result.da_not_coarsend.name == "da_not_coarsend"

# discard attrs
func = getattr(ds.coarsen(dim={"coord": 5}), funcname)
result = func(*argument, keep_attrs=False)
assert result.attrs == {}
assert result.da.attrs == {}
assert result.da_not_coarsend.attrs == {}
assert result.coord.attrs == {}
assert result.da.name == "da"
assert result.da_not_coarsend.name == "da_not_coarsend"

# test discard attrs using global option
func = getattr(ds.coarsen(dim={"coord": 5}), funcname)
with set_options(keep_attrs=False):
result = func(*argument)

assert result.attrs == {}
assert result.da.attrs == {}
assert result.da_not_coarsend.attrs == {}
assert result.coord.attrs == {}
assert result.da.name == "da"
assert result.da_not_coarsend.name == "da_not_coarsend"

# keyword takes precedence over global option
func = getattr(ds.coarsen(dim={"coord": 5}), funcname)
with set_options(keep_attrs=False):
result = func(*argument, keep_attrs=True)

assert result.attrs == global_attrs
assert result.da.attrs == da_attrs
assert result.da_not_coarsend.attrs == da_not_coarsend_attrs
assert result.coord.attrs == attrs_coords
assert result.da.name == "da"
assert result.da_not_coarsend.name == "da_not_coarsend"

func = getattr(ds.coarsen(dim={"coord": 5}), funcname)
with set_options(keep_attrs=True):
result = func(*argument, keep_attrs=False)

assert result.attrs == {}
assert result.da.attrs == {}
assert result.da_not_coarsend.attrs == {}
assert result.coord.attrs == {}
assert result.da.name == "da"
assert result.da_not_coarsend.name == "da_not_coarsend"


def test_coarsen_keep_attrs_deprecated():
global_attrs = {"units": "test", "long_name": "testing"}
attrs_da = {"da_attr": "test"}

data = np.linspace(10, 15, 100)
coords = np.linspace(1, 10, 100)

ds = Dataset(
data_vars={"da": ("coord", data)},
coords={"coord": coords},
attrs=global_attrs,
)
ds.da.attrs = attrs_da

# deprecated option
with pytest.warns(
FutureWarning, match="Passing ``keep_attrs`` to ``coarsen`` is deprecated"
):
result = ds.coarsen(dim={"coord": 5}, keep_attrs=False).mean()

assert result.attrs == {}
assert result.da.attrs == {}

# the keep_attrs in the reduction function takes precedence
with pytest.warns(
FutureWarning, match="Passing ``keep_attrs`` to ``coarsen`` is deprecated"
):
result = ds.coarsen(dim={"coord": 5}, keep_attrs=True).mean(keep_attrs=False)

assert result.attrs == {}
assert result.da.attrs == {}


@pytest.mark.slow
@pytest.mark.parametrize("ds", (1, 2), indirect=True)
@pytest.mark.parametrize("window", (1, 2, 3, 4))
@pytest.mark.parametrize("name", ("sum", "mean", "std", "var", "min", "max", "median"))
def test_coarsen_reduce(ds, window, name):
# Use boundary="trim" to accomodate all window sizes used in tests
coarsen_obj = ds.coarsen(time=window, boundary="trim")

# add nan prefix to numpy methods to get similar behavior as bottleneck
actual = coarsen_obj.reduce(getattr(np, f"nan{name}"))
expected = getattr(coarsen_obj, name)()
assert_allclose(actual, expected)

# make sure the order of data_var are not changed.
assert list(ds.data_vars.keys()) == list(actual.data_vars.keys())

# Make sure the dimension order is restored
for key, src_var in ds.data_vars.items():
assert src_var.dims == actual[key].dims


@pytest.mark.parametrize(
"funcname, argument",
[
("reduce", (np.mean,)),
("mean", ()),
],
)
def test_coarsen_da_keep_attrs(funcname, argument):
attrs_da = {"da_attr": "test"}
attrs_coords = {"attrs_coords": "test"}

data = np.linspace(10, 15, 100)
coords = np.linspace(1, 10, 100)

da = DataArray(
data,
dims=("coord"),
coords={"coord": ("coord", coords, attrs_coords)},
attrs=attrs_da,
name="name",
)

# attrs are now kept per default
func = getattr(da.coarsen(dim={"coord": 5}), funcname)
result = func(*argument)
assert result.attrs == attrs_da
da.coord.attrs == attrs_coords
assert result.name == "name"

# discard attrs
func = getattr(da.coarsen(dim={"coord": 5}), funcname)
result = func(*argument, keep_attrs=False)
assert result.attrs == {}
da.coord.attrs == {}
assert result.name == "name"

# test discard attrs using global option
func = getattr(da.coarsen(dim={"coord": 5}), funcname)
with set_options(keep_attrs=False):
result = func(*argument)
assert result.attrs == {}
da.coord.attrs == {}
assert result.name == "name"

# keyword takes precedence over global option
func = getattr(da.coarsen(dim={"coord": 5}), funcname)
with set_options(keep_attrs=False):
result = func(*argument, keep_attrs=True)
assert result.attrs == attrs_da
da.coord.attrs == {}
assert result.name == "name"

func = getattr(da.coarsen(dim={"coord": 5}), funcname)
with set_options(keep_attrs=True):
result = func(*argument, keep_attrs=False)
assert result.attrs == {}
da.coord.attrs == {}
assert result.name == "name"


def test_coarsen_da_keep_attrs_deprecated():
attrs_da = {"da_attr": "test"}

data = np.linspace(10, 15, 100)
coords = np.linspace(1, 10, 100)

da = DataArray(data, dims=("coord"), coords={"coord": coords}, attrs=attrs_da)

# deprecated option
with pytest.warns(
FutureWarning, match="Passing ``keep_attrs`` to ``coarsen`` is deprecated"
):
result = da.coarsen(dim={"coord": 5}, keep_attrs=False).mean()

assert result.attrs == {}

# the keep_attrs in the reduction function takes precedence
with pytest.warns(
FutureWarning, match="Passing ``keep_attrs`` to ``coarsen`` is deprecated"
):
result = da.coarsen(dim={"coord": 5}, keep_attrs=True).mean(keep_attrs=False)

assert result.attrs == {}


@pytest.mark.parametrize("da", (1, 2), indirect=True)
@pytest.mark.parametrize("window", (1, 2, 3, 4))
@pytest.mark.parametrize("name", ("sum", "mean", "std", "max"))
def test_coarsen_da_reduce(da, window, name):
if da.isnull().sum() > 1 and window == 1:
pytest.skip("These parameters lead to all-NaN slices")

# Use boundary="trim" to accomodate all window sizes used in tests
coarsen_obj = da.coarsen(time=window, boundary="trim")

# add nan prefix to numpy methods to get similar # behavior as bottleneck
actual = coarsen_obj.reduce(getattr(np, f"nan{name}"))
expected = getattr(coarsen_obj, name)()
assert_allclose(actual, expected)
Loading