Skip to content

Change Loop op with maximum iterations input M equals to empty string #1971

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jun 17, 2022
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 17 additions & 14 deletions tf2onnx/onnx_opset/controlflow.py
Original file line number Diff line number Diff line change
Expand Up @@ -381,29 +381,32 @@ def version_7(cls, ctx, node, **kwargs):
# may be removed from output_names below
output_names = node.output.copy()

# Make maximum_iterations int64 and replace -1(tf) with maxsize(onnx). If the const node has no other
# Make maximum_iterations int64. If the const node has no other
# consumers, modify it in place. Otherwise, make a new const node and leave the original unchanged.
# if maximum_iterations is not const,should add an cast node(cast to int64)
maximum_iterations_name = node.input[1]
if node.inputs[1].is_const():
maximum_iterations = node.inputs[1].get_tensor_value()
if maximum_iterations == -1:
maximum_iterations = np.iinfo(np.int64).max
consumers = ctx.find_output_consumers(maximum_iterations_name)
external_consumers = [c for c in consumers if c != node and c.type != 'TensorListReserve']
if len(external_consumers) == 0:
ctx.remove_node(node.inputs[1].name)
# maximum_iterations with -1(tf) means it doesn't set the maximum count.
# For onnx Loop op optional input `M`(int64), represents a maximum trip-count. Set empty string to skip.
if maximum_iterations != -1:
consumers = ctx.find_output_consumers(maximum_iterations_name)
external_consumers = [c for c in consumers if c != node and c.type != 'TensorListReserve']
if len(external_consumers) == 0:
ctx.remove_node(node.inputs[1].name)
else:
maximum_iterations_name = utils.make_name(node.inputs[1].name)
ctx.make_const(maximum_iterations_name, np.array(maximum_iterations, dtype=np.int64))
ctx.replace_input(node, node.input[1], maximum_iterations_name, 1)
maximum_iterations_m = maximum_iterations_name
else:
maximum_iterations_name = utils.make_name(node.inputs[1].name)
ctx.make_const(maximum_iterations_name, np.array(maximum_iterations, dtype=np.int64))
ctx.replace_input(node, node.input[1], maximum_iterations_name, 1)
maximum_iterations_int64 = maximum_iterations_name
maximum_iterations_m = ""
else:
cast_inputs = [maximum_iterations_name]
attr = {"to": onnx_pb.TensorProto.INT64}
cast_name = node.name + "_cast"
cast_node = ctx.make_node("Cast", cast_inputs, attr, name=cast_name)
maximum_iterations_int64 = cast_node.output[0]
maximum_iterations_m = cast_node.output[0]

cond_name = node.get_attr_str("cond")
cond_graph = find_function(cond_name)
Expand All @@ -427,7 +430,7 @@ def version_7(cls, ctx, node, **kwargs):
cond_input_to_state_var[cond_graph.input_names[idx]] = maximum_iterations_name
continue
if idx < 2:
# skip [0,1] loop_counter, max_iterations
# skip [0,1] loop_counter, max_iterations
continue
n = node.inputs[idx]
if n.type in ["TensorListReserve", "TensorListResize"]:
Expand Down Expand Up @@ -511,7 +514,7 @@ def version_7(cls, ctx, node, **kwargs):
output_names = output_names[2:]

branches = {"body": body}
loop_node = ctx.make_node("Loop", [maximum_iterations_int64, cond_outputs[0]] + loop_vars,
loop_node = ctx.make_node("Loop", [maximum_iterations_m, cond_outputs[0]] + loop_vars,
output_count=len(output_shapes), name=node.name + "_loop",
shapes=output_shapes, dtypes=output_dtypes, skip_conversion=True,
branches=branches)
Expand Down