Skip to content

Bert2Bert concat axis dimension error at serving time #1757

Closed
@LoicDagnas

Description

@LoicDagnas

Describe the bug
Converting a Bert2Bert model from TensorFlow model official, I get the following errors at serving time:

Traceback (most recent call last):
  File "C:/dev/ml/QueryGenerator/query_generator/models/bert2bert/save_model.py", line 245, in <module>
    output = session.run(output_names=None, input_feed=input_feed)
  File "C:\dev\ml\QueryGenerator\venv\lib\site-packages\onnxruntime\capi\onnxruntime_inference_collection.py", line 188, in run
    return self._sess.run(output_names, input_feed, run_options)
onnxruntime.capi.onnxruntime_pybind11_state.Fail: [ONNXRuntimeError] : 1 : FAIL : Non-zero status code returned while running Loop node. Name:'bert2_bert/while_loop' Status Message: Non-zero status code returned while running Concat node. Name:'bert2_bert/while/decoder/decoder/layer_0/self_attention/concat' Status Message: concat.cc:159 onnxruntime::ConcatBase::PrepareForCompute Non concat axis dimensions must match: Axis 0 has mismatched dimensions of 10 and 6

It is quite close to the error I had at the end of this issue, but:

  • the model is different
  • the minimal code is simpler
  • the error is different

System information

  • OS Platform and Distribution (e.g., Linux Ubuntu 16.04): Windows 10.0.19042
  • Tensorflow Version: 2.5.0
  • Python version: 3.7.6

To Reproduce
It is quite easy to reproduce using the following code:

 import tensorflow as tf
 import onnxruntime
 import tf2onnx
 from official.nlp.nhnet.configs import UNITTEST_CONFIG, BERT2BERTConfig
 from official.nlp.nhnet.models import Bert2Bert, get_bert2bert_layers
 
 MAX_SEQ_LENGTH = 10
 MAX_OUTPUT_LENGTH = 4
 
 # Create the Bert2Bert model
 bert2bert_config_dict = UNITTEST_CONFIG.copy()
 bert2bert_config_dict["max_position_embeddings"] = MAX_SEQ_LENGTH
 bert2bert_config_dict["len_title"] = MAX_OUTPUT_LENGTH
 bert2bert_config = BERT2BERTConfig.from_args(**bert2bert_config_dict)
 bert_layer, decoder_layer = get_bert2bert_layers(params=bert2bert_config)
 
 bert2bert = Bert2Bert(bert2bert_config, bert_layer, decoder_layer)
 
 # Define the serving function
 @tf.function()
 def serve(inputs):
     return bert2bert(inputs=inputs, mode="predict")
 

 # Convert the model to ONNX and save it
 model_proto, _ = tf2onnx.convert.from_function(
     function=serve,
     opset=14,
     input_signature=[{
         'input_ids': tf.TensorSpec(shape=(None, MAX_SEQ_LENGTH,), dtype=tf.int32, name='input_ids'),
         'input_mask': tf.TensorSpec(shape=(None, MAX_SEQ_LENGTH,), dtype=tf.int32, name='input_mask'),
         'segment_ids': tf.TensorSpec(shape=(None, MAX_SEQ_LENGTH,), dtype=tf.int32, name='segment_ids')
     }],
     output_path='model.onnx'
 )
 
 # Try to serve the model
 input_ids = [101, 2023, 2633, 4504, 1999, 6094, 2008, 102, 0, 0]
 sess_options = onnxruntime.SessionOptions()
 sess_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_DISABLE_ALL
 session = onnxruntime.InferenceSession('model.onnx',
                                        sess_options,
                                        providers=["CPUExecutionProvider"])
 
 input_feed = {
     "input_ids": [input_ids],
     "input_mask": [[0 if i == 0 else 1 for i in input_ids]],
     "segment_ids": [[0 for _ in input_ids]]
 }
 
output = session.run(output_names=None, input_feed=input_feed)

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions