Skip to content

Lazy loading of LazyArrays #23

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Apr 20, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
7 changes: 4 additions & 3 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -5,21 +5,21 @@ version = "0.2.1"

[deps]
Compat = "34da2185-b29b-5c13-b0c7-acf172513d20"
LazyArrays = "5078a376-72f3-5289-bfd5-ec5146d43c02"
LazyStack = "1fad7336-0346-5a1a-a56f-a06ba010965b"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
MacroTools = "1914dd2f-81c6-5fcd-8719-6d5c9610ff09"
OffsetArrays = "6fe1bfb0-de20-5000-8ca7-80f57d26f881"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Requires = "ae029012-a4dd-5104-9daa-d747884805df"
StaticArrays = "90137ffa-7385-5640-81b9-e52037218182"
ZygoteRules = "700de1a5-db45-46bc-99cf-38207098b444"

[compat]
Compat = "2.2, 3"
LazyArrays = "0.12, 0.13, 0.14, 0.15, 0.16"
LazyStack = "0.0.4, 0.0.5, 0.0.6, 0.0.7, 0.0.8"
MacroTools = "0.5"
OffsetArrays = "0.11, 1.0"
Requires = "0.5, 1"
StaticArrays = "0.10, 0.11, 0.12"
ZygoteRules = "0.1, 0.2"
julia = "1"
Expand All @@ -28,10 +28,11 @@ julia = "1"
Compat = "34da2185-b29b-5c13-b0c7-acf172513d20"
Einsum = "b7d42ee7-0b51-5a75-98ca-779d3107e4c0"
JuliennedArrays = "5cadff95-7770-533d-a838-a1bf817ee6e0"
LazyArrays = "5078a376-72f3-5289-bfd5-ec5146d43c02"
LoopVectorization = "bdcacae8-1622-11e9-2a5c-532679323890"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
Strided = "5e0ebb24-38b0-5f93-81fe-25c709ecae67"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]
test = ["Test", "Compat", "Einsum", "JuliennedArrays", "LoopVectorization", "Statistics", "Strided"]
test = ["Test", "Compat", "Einsum", "JuliennedArrays", "LazyArrays", "LoopVectorization", "Statistics", "Strided"]
2 changes: 2 additions & 0 deletions docs/src/options.md
Original file line number Diff line number Diff line change
Expand Up @@ -79,11 +79,13 @@ In the following example, the product `V .* V' .* V3` contains about 1GB of data
the writing of which is avoided by giving the option `lazy`:

```julia
using LazyArrays # you must now load this package
V = rand(500); V3 = reshape(V,1,1,:);

@time @reduce W[i] := sum(j,k) V[i]*V[j]*V[k]; # 0.6 seconds, 950 MB
@time @reduce W[i] := sum(j,k) V[i]*V[j]*V[k] lazy; # 0.025 s, 5 KB
```
However, right now this gives `3.7 s (250 M allocations, 9 GB)`, something is broken!

The package [Strided.jl](https://github.com/Jutho/Strided.jl) can apply multi-threading to
broadcasting, and some other magic. You can enable it with the option `strided`, like this:
Expand Down
33 changes: 28 additions & 5 deletions src/TensorCast.jl
Original file line number Diff line number Diff line change
@@ -1,6 +1,12 @@

module TensorCast

# This speeds up loading a bit, on Julia 1.5, about 1s in my test.
# https://github.com/JuliaPlots/Plots.jl/pull/2544/files
if isdefined(Base, :Experimental) && isdefined(Base.Experimental, Symbol("@optlevel"))
@eval Base.Experimental.@optlevel 1
end

export @cast, @reduce, @matmul, @pretty

using MacroTools, StaticArrays, Compat
Expand All @@ -10,11 +16,28 @@ include("macro.jl")
include("pretty.jl")
include("string.jl")

include("slice.jl") # slice, glue, etc
include("view.jl") # orient, Reverse{d} etc
include("lazy.jl") # LazyCast
include("static.jl") # StaticArrays
module Fast # shield non-macro code from @optlevel 1
using LinearAlgebra, StaticArrays, Compat

include("slice.jl") # slice, glue, etc
export sliceview, slicecopy, glue, glue!, red_glue, cat_glue, copy_glue, lazy_glue, iscodesorted, countcolons

include("view.jl") # orient, Reverse{d} etc
export diagview, orient, rview, mul!, star, PermuteDims, Reverse, Shuffle

include("static.jl") # StaticArrays
export static_slice, static_glue

end
using .Fast
const mul! = Fast.mul!

using Requires

@init @require LazyArrays = "5078a376-72f3-5289-bfd5-ec5146d43c02" begin
include("lazy.jl") # LazyCast # this costs about 3s in my test, 3.8s -> 7.7s
end

include("warm.jl")
include("warm.jl") # worth 2s in my test

end # module
2 changes: 1 addition & 1 deletion src/lazy.jl
Original file line number Diff line number Diff line change
@@ -1,5 +1,5 @@

import LazyArrays
import .LazyArrays

#=
The macro option "lazy" always produces things like sum(@__dot__(lazy(x+y)))
Expand Down
16 changes: 12 additions & 4 deletions src/macro.jl
Original file line number Diff line number Diff line change
Expand Up @@ -234,6 +234,8 @@ This mostly aims to re-work the given expression into `some(steps(A))[i,j]`,
but also pushes `A = f(x)` into `store.top`.
"""
function standardise(ex, store::NamedTuple, call::CallInfo; LHS=false)
@nospecialize ex

# This acts only on single indexing expressions:
if @capture(ex, A_{ijk__})
static=true
Expand Down Expand Up @@ -378,6 +380,7 @@ target dims not correctly handled yet -- what do I want? TODO
Simple glue / stand. does not permutedims, but broadcasting may have to... avoid twice?
"""
function standardglue(ex, target, store::NamedTuple, call::CallInfo)
@nospecialize ex

# The sole target here is indexing expressions:
if @capture(ex, A_[inner__])
Expand Down Expand Up @@ -469,6 +472,7 @@ This beings the expression to have target indices,
by permutedims and if necessary broadcasting, always using `readycast()`.
"""
function targetcast(ex, target, store::NamedTuple, call::CallInfo)
@nospecialize ex

# If just one naked expression, then we won't broadcast:
if @capture(ex, A_[ijk__])
Expand Down Expand Up @@ -503,6 +507,7 @@ end
This is walked over the expression to prepare for `@__dot__` etc, by `targetcast()`.
"""
function readycast(ex, target, store::NamedTuple, call::CallInfo)
@nospecialize ex

# Scalar functions can be protected entirely from broadcasting:
# TODO this means A[i,j] + rand()/10 doesn't work, /(...,10) is a function!
Expand Down Expand Up @@ -578,6 +583,7 @@ If there are more than two factors, it recurses, and you get `(A*B) * C`,
or perhaps tuple `(A*B, C)`.
"""
function matmultarget(ex, target, parsed, store::NamedTuple, call::CallInfo)
@nospecialize ex

@capture(ex, A_ * B_ * C__ | *(A_, B_, C__) ) || throw(MacroError("can't @matmul that!", call))

Expand Down Expand Up @@ -631,6 +637,7 @@ pushing calculation steps into store.
Also a convenient place to tidy all indices, including e.g. `fun(M[:,j],N[j]).same[i']`.
"""
function recursemacro(ex, store::NamedTuple, call::CallInfo)
@nospecialize ex

# Actually look for recursion
if @capture(ex, @reduce(subex__) )
Expand Down Expand Up @@ -675,6 +682,8 @@ This saves to `store` the sizes of all input tensors, and their sub-slices if an
however it should not destroy this so that `sz_j` can be got later.
"""
function rightsizes(ex, store::NamedTuple, call::CallInfo)
@nospecialize ex

:recurse in call.flags && return nothing # outer version took care of this

if @capture(ex, A_[outer__][inner__] | A_[outer__]{inner__} )
Expand Down Expand Up @@ -1115,8 +1124,7 @@ end

tensorprimetidy(v::Vector) = Any[ tensorprimetidy(x) for x in v ]
function tensorprimetidy(ex)
MacroTools.postwalk(ex) do x

MacroTools.postwalk(ex) do @nospecialize x
@capture(x, ((ij__,) \ k_) ) && return :( ($(ij...),$k) )
@capture(x, i_ \ j_ ) && return :( ($i,$j) )

Expand Down Expand Up @@ -1172,7 +1180,7 @@ containsindexing(s) = false
function containsindexing(ex::Expr)
flag = false
# MacroTools.postwalk(x -> @capture(x, A_[ijk__]) && (flag=true), ex)
MacroTools.postwalk(ex) do x
MacroTools.postwalk(ex) do @nospecialize x
# @capture(x, A_[ijk__]) && !(all(isconstant, ijk)) && (flag=true)
if @capture(x, A_[ijk__])
# @show x ijk # TODO this is a bit broken? @pretty @cast Z[i,j] := W[i] * exp(X[1][i] - X[2][j])
Expand All @@ -1185,7 +1193,7 @@ end
listindices(s::Symbol) = []
function listindices(ex::Expr)
list = []
MacroTools.postwalk(ex) do x
MacroTools.postwalk(ex) do @nospecialize x
if @capture(x, A_[ijk__])
flat, _ = indexparse(nothing, ijk)
push!(list, flat)
Expand Down
1 change: 1 addition & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ using StaticArrays
using OffsetArrays
using Einsum
using Strided
using LazyArrays
using Compat
if VERSION >= v"1.1"
using LoopVectorization
Expand Down