Skip to content

[mlir][vector] Add support for vector extract/insert_strided_slice in vector distribution. #145421

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged

Conversation

charithaintc
Copy link
Contributor

This PR adds initial support for vector.extract_strided_slice and vector.insert_strided_slice ops in vector distribution.

Initial support assumes that sinking both these ops do not require any cross lane comm. This requires,

  • Only a single dim is distributed.

For extract_strided_slice

  • extracted source vector must have rank greater than 1.
  • extraction happens in non distributed dims. (distributed dim is fully extracted).

For insert_strided_slice

  • Both inserted value (kD) and dest (nD) vectors are distributed (no broadcasting is involved). this require that distributed dimension is contained with the last k dims of the dest vector.

(Check code comments for more details)

@llvmbot
Copy link
Member

llvmbot commented Jun 23, 2025

@llvm/pr-subscribers-mlir-gpu

@llvm/pr-subscribers-mlir

Author: Charitha Saumya (charithaintc)

Changes

This PR adds initial support for vector.extract_strided_slice and vector.insert_strided_slice ops in vector distribution.

Initial support assumes that sinking both these ops do not require any cross lane comm. This requires,

  • Only a single dim is distributed.

For extract_strided_slice

  • extracted source vector must have rank greater than 1.
  • extraction happens in non distributed dims. (distributed dim is fully extracted).

For insert_strided_slice

  • Both inserted value (kD) and dest (nD) vectors are distributed (no broadcasting is involved). this require that distributed dimension is contained with the last k dims of the dest vector.

(Check code comments for more details)


Full diff: https://github.com/llvm/llvm-project/pull/145421.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp (+210-10)
  • (modified) mlir/test/Dialect/Vector/vector-warp-distribute.mlir (+80)
diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp
index 045c192787f10..297bb40cbb334 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp
@@ -15,9 +15,12 @@
 #include "mlir/Dialect/Vector/IR/VectorOps.h"
 #include "mlir/Dialect/Vector/Transforms/VectorDistribution.h"
 #include "mlir/IR/AffineExpr.h"
+#include "mlir/IR/Attributes.h"
+#include "mlir/IR/BuiltinTypes.h"
 #include "mlir/Interfaces/SideEffectInterfaces.h"
 #include "mlir/Transforms/RegionUtils.h"
 #include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVectorExtras.h"
 #include "llvm/Support/FormatVariadic.h"
 #include <utility>
 
@@ -52,6 +55,21 @@ static AffineMap calculateImplicitMap(VectorType sequentialType,
   return map;
 }
 
+static int getDistributedDim(VectorType origType, VectorType distributedType) {
+  assert(origType.getRank() == distributedType.getRank() &&
+         "sequential and distributed vector types must have the same rank");
+  int64_t distributedDim = -1;
+  for (int64_t i = 0; i < origType.getRank(); ++i) {
+    if (distributedType.getDimSize(i) != origType.getDimSize(i)) {
+      // Keep this assert here in case WarpExecuteOnLane0Op gets extended to
+      // support distributing multiple dimensions in the future.
+      assert(distributedDim == -1 && "found multiple distributed dims");
+      distributedDim = i;
+    }
+  }
+  return distributedDim;
+}
+
 namespace {
 
 /// Helper struct to create the load / store operations that permit transit
@@ -1076,6 +1094,195 @@ struct WarpOpCreateMask : public WarpDistributionPattern {
   }
 };
 
+/// Sink out insert_strided_slice op feeding into a warp op yield.
+/// ```
+/// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<8x1xf32>) {
+///   ...
+///   %src = ... : vector<4x16xf32>
+///   %dest = ... : vector<8x16xf32>
+///   %insert = vector.insert_strided_slice %src, %dest, offsets = [0, 0],
+///     strides = [1, 1] : vector<4x16xf32> into vector<8x16xf32>
+///   gpu.yield %insert : vector<8x16xf32>
+/// }
+/// ```
+/// To
+/// ```
+/// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<4x1xf32>,
+/// vector<8x1xf32>) {
+///   ...
+///   %src = ... : vector<4x16xf32>
+///   %dest = ... : vector<8x16xf32>
+///   gpu.yield %src, %dest : vector<4x16xf32>, vector<8x16xf32>
+/// }
+/// %insert = vector.insert_strided_slice %0#0, %0#1,
+///   offsets = [0, 0], strides = [1, 1] : vector<4x1xf32> into vector<8x1xf32>
+/// ```
+/// NOTE: Current support assume that both src and dest vectors are distributed
+/// to lanes and sinking the insert op does not require any cross lane
+/// communication.
+struct WarpOpInsertStridedSlice : public WarpDistributionPattern {
+  using Base::Base;
+  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
+                                PatternRewriter &rewriter) const override {
+    OpOperand *operand =
+        getWarpResult(warpOp, llvm::IsaPred<vector::InsertStridedSliceOp>);
+    if (!operand)
+      return failure();
+    unsigned int operandNumber = operand->getOperandNumber();
+    auto insertOp =
+        operand->get().getDefiningOp<vector::InsertStridedSliceOp>();
+    auto distributedType =
+        cast<VectorType>(warpOp.getResult(operandNumber).getType());
+    // Distributed type must be 2D or higher.
+    // TODO: Support 1D distributed types.
+    if (distributedType.getRank() < 2)
+      return rewriter.notifyMatchFailure(
+          insertOp, "result vector type must be 2D or higher");
+    // Find the distributed dimension of the dest vector. There should be
+    // exactly one.
+    auto yieldedType = cast<VectorType>(operand->get().getType());
+    int64_t destDistributedDim =
+        getDistributedDim(yieldedType, distributedType);
+    assert(destDistributedDim != -1 && "could not find distributed dimension");
+    (void)destDistributedDim;
+    VectorType srcType = insertOp.getSourceVectorType();
+    VectorType destType = insertOp.getDestVectorType();
+    // Currently we require that both source (kD) and dest (nD) vectors are
+    // distributed. This requires that distributedDim (d) is contained in the
+    // last k dims of the dest vector (d >= n - k).
+    // TODO: Add support for case where source vector is not distributed.
+    int64_t sourceDistributedDim =
+        destDistributedDim - (destType.getRank() - srcType.getRank());
+    if (sourceDistributedDim < 0)
+      return rewriter.notifyMatchFailure(
+          insertOp, "distributed dimension must be in the last k dims");
+    // Distributed dimension must be fully inserted.
+    if (srcType.getDimSize(sourceDistributedDim) !=
+        destType.getDimSize(destDistributedDim))
+      return rewriter.notifyMatchFailure(
+          insertOp, "distributed dimension must be fully inserted");
+    SmallVector<int64_t> newSourceDistShape(
+        insertOp.getSourceVectorType().getShape()),
+        newDestDistShape(insertOp.getDestVectorType().getShape());
+    newSourceDistShape[sourceDistributedDim] =
+        distributedType.getDimSize(destDistributedDim);
+    newDestDistShape[destDistributedDim] =
+        distributedType.getDimSize(destDistributedDim);
+    auto newSourceTy =
+        VectorType::get(newSourceDistShape, distributedType.getElementType());
+    auto newDestTy =
+        VectorType::get(newDestDistShape, distributedType.getElementType());
+    SmallVector<size_t> newRetIndices;
+    WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
+        rewriter, warpOp, {insertOp.getValueToStore(), insertOp.getDest()},
+        {newSourceTy, newDestTy}, newRetIndices);
+    rewriter.setInsertionPointAfter(newWarpOp);
+    auto distributedSource = newWarpOp->getResult(newRetIndices[0]);
+    auto distributedDest = newWarpOp->getResult(newRetIndices[1]);
+    // Create a new insert strided slice op that inserts distributed source into
+    // distributed dest.
+    Value newInsert = rewriter.create<vector::InsertStridedSliceOp>(
+        insertOp.getLoc(), distributedDest.getType(), distributedSource,
+        distributedDest, insertOp.getOffsets(), insertOp.getStrides());
+    rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), newInsert);
+    return success();
+  }
+};
+
+/// Sink out extract_strided_slice op feeding into a warp op yield.
+/// ```
+/// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<16x1xf32>) {
+///   ...
+///   %src = ... : vector<32x16xf32>
+///   %extract = vector.extract_strided_slice %src, offsets = [0], sizes = [16],
+///     strides = [1] : vector<32x16xf32> to vector<16x16xf32>
+///   gpu.yield %extract : vector<16x16xf32>
+/// }
+/// ```
+/// To
+/// ````
+/// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<32x1xf32>) {
+///   ...
+///   %src = ... : vector<32x16xf32>
+///   gpu.yield %src : vector<32x16xf32>
+/// }
+/// %extract = vector.extract_strided_slice %0, offsets = [0], sizes = [16],
+///   strides = [1] : vector<32x1xf32> to vector<16x1xf32>
+/// ```
+/// NOTE: Current support assumes that the extraction happens only on non
+/// distributed dimensions (does not require cross lane communication).
+struct WarpOpExtractStridedSlice : public WarpDistributionPattern {
+  using Base::Base;
+  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
+                                PatternRewriter &rewriter) const override {
+    OpOperand *operand =
+        getWarpResult(warpOp, llvm::IsaPred<vector::ExtractStridedSliceOp>);
+    if (!operand)
+      return failure();
+    unsigned int operandNumber = operand->getOperandNumber();
+    auto extractOp =
+        operand->get().getDefiningOp<vector::ExtractStridedSliceOp>();
+    auto distributedType =
+        cast<VectorType>(warpOp.getResult(operandNumber).getType());
+    // Distributed type must be 2D or higher.
+    // TODO: Support 1D distributed types.
+    if (distributedType.getRank() < 2)
+      return rewriter.notifyMatchFailure(
+          extractOp, "result vector type must be 2D or higher");
+
+    // Find the distributed dimension. There should be exactly one.
+    auto yieldedType = cast<VectorType>(operand->get().getType());
+    int64_t distributedDim = getDistributedDim(yieldedType, distributedType);
+    assert(distributedDim != -1 && "could not find distributed dimension");
+    (void)distributedDim;
+
+    // Distributed dimension must be fully extracted.
+    // TODO: Partial extraction from distributed dimension require cross lane
+    // communication.
+    if (distributedDim < static_cast<int64_t>(extractOp.getSizes().size())) {
+      int64_t distributedDimOffset =
+          llvm::cast<IntegerAttr>(extractOp.getOffsets()[distributedDim])
+              .getInt();
+      int64_t distributedDimSize =
+          llvm::cast<IntegerAttr>(extractOp.getSizes()[distributedDim])
+              .getInt();
+      if (distributedDimOffset != 0 ||
+          distributedDimSize != yieldedType.getDimSize(distributedDim))
+        return rewriter.notifyMatchFailure(
+            extractOp, "distributed dimension must be fully extracted");
+    }
+    SmallVector<int64_t> newDistributedShape(
+        extractOp.getSourceVectorType().getShape());
+    newDistributedShape[distributedDim] =
+        distributedType.getDimSize(distributedDim);
+    auto newDistributedType =
+        VectorType::get(newDistributedShape, distributedType.getElementType());
+    SmallVector<size_t> newRetIndices;
+    WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
+        rewriter, warpOp, {extractOp.getVector()}, {newDistributedType},
+        newRetIndices);
+    rewriter.setInsertionPointAfter(newWarpOp);
+    SmallVector<Attribute> distributedSizes = llvm::map_to_vector(
+        extractOp.getSizes(), [](Attribute attr) { return attr; });
+    // Update the distributed sizes to match the distributed type.
+    if (distributedDim < static_cast<int64_t>(distributedSizes.size()))
+      distributedSizes[distributedDim] = rewriter.getI64IntegerAttr(
+          distributedType.getDimSize(distributedDim));
+
+    // Create a new extract strided slice op that extracts from the
+    // distributed vector.
+    Value distributedVec = newWarpOp->getResult(newRetIndices[0]);
+    Value newExtract = rewriter.create<vector::ExtractStridedSliceOp>(
+        extractOp.getLoc(), distributedType, distributedVec,
+        extractOp.getOffsets(),
+        ArrayAttr::get(rewriter.getContext(), distributedSizes),
+        extractOp.getStrides());
+    rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber),
+                                newExtract);
+    return success();
+  }
+};
+
 /// Pattern to move out vector.extract of single element vector. Those don't
 /// need to be distributed and can just be propagated outside of the region.
 struct WarpOpExtract : public WarpDistributionPattern {
@@ -1122,15 +1329,7 @@ struct WarpOpExtract : public WarpDistributionPattern {
     auto distributedType =
         cast<VectorType>(warpOp.getResult(operandNumber).getType());
     auto yieldedType = cast<VectorType>(operand->get().getType());
-    int64_t distributedDim = -1;
-    for (int64_t i = 0; i < yieldedType.getRank(); ++i) {
-      if (distributedType.getDimSize(i) != yieldedType.getDimSize(i)) {
-        // Keep this assert here in case WarpExecuteOnLane0Op gets extended to
-        // support distributing multiple dimensions in the future.
-        assert(distributedDim == -1 && "found multiple distributed dims");
-        distributedDim = i;
-      }
-    }
+    int64_t distributedDim = getDistributedDim(yieldedType, distributedType);
     assert(distributedDim != -1 && "could not find distributed dimension");
     (void)distributedDim;
 
@@ -1764,7 +1963,8 @@ void mlir::vector::populatePropagateWarpVectorDistributionPatterns(
   patterns.add<WarpOpElementwise, WarpOpDeadResult, WarpOpBroadcast,
                WarpOpShapeCast, WarpOpExtract, WarpOpForwardOperand,
                WarpOpConstant, WarpOpExtractElement, WarpOpInsertElement,
-               WarpOpInsertScalar, WarpOpInsert, WarpOpCreateMask>(
+               WarpOpInsertScalar, WarpOpInsert, WarpOpCreateMask,
+               WarpOpExtractStridedSlice, WarpOpInsertStridedSlice>(
       patterns.getContext(), benefit);
   patterns.add<WarpOpExtractScalar>(patterns.getContext(), warpShuffleFromIdxFn,
                                     benefit);
diff --git a/mlir/test/Dialect/Vector/vector-warp-distribute.mlir b/mlir/test/Dialect/Vector/vector-warp-distribute.mlir
index 38771f2593449..8c3060c91f0d1 100644
--- a/mlir/test/Dialect/Vector/vector-warp-distribute.mlir
+++ b/mlir/test/Dialect/Vector/vector-warp-distribute.mlir
@@ -1296,6 +1296,86 @@ func.func @vector_insert_2d_broadcast(%laneid: index) -> (vector<4x96xf32>) {
   return %r : vector<4x96xf32>
 }
 
+// -----
+// CHECK-PROP-LABEL: func.func @vector_extract_strided_slice_2d_distr_outer(
+//  CHECK-RPOP-SAME: %[[LANEID:.*]]: index
+//       CHECK-PROP: %[[W:.*]] = gpu.warp_execute_on_lane_0{{.*}} -> (vector<64x1xf32>) {
+//       CHECK-PROP: %[[VEC:.*]] = "some_def"() : () -> vector<64x32xf32>
+//       CHECK-PROP: gpu.yield %[[VEC]] : vector<64x32xf32>
+//       CHECK-PROP: %[[EXTRACT:.*]] = vector.extract_strided_slice %[[W]]
+//  CHECK-PROP-SAME: {offsets = [8], sizes = [24], strides = [1]} : vector<64x1xf32> to vector<24x1xf32>
+//       CHECK-PROP: return %[[EXTRACT]] : vector<24x1xf32>
+func.func @vector_extract_strided_slice_2d_distr_outer(%laneid: index) -> (vector<24x1xf32>) {
+  %r = gpu.warp_execute_on_lane_0(%laneid)[32] -> (vector<24x1xf32>) {
+    %0 = "some_def"() : () -> (vector<64x32xf32>)
+    %1 = vector.extract_strided_slice %0 { offsets = [8], sizes = [24], strides = [1]}
+      : vector<64x32xf32> to vector<24x32xf32>
+    gpu.yield %1 : vector<24x32xf32>
+  }
+  return %r : vector<24x1xf32>
+}
+
+// -----
+// CHECK-PROP-LABEL: func.func @vector_extract_strided_slice_2d_distr_inner(
+//  CHECK-PROP-SAME: %[[LANEID:.*]]: index
+//       CHECK-PROP: %[[W:.*]] = gpu.warp_execute_on_lane_0{{.*}} -> (vector<1x64xf32>) {
+//       CHECK-PROP: %[[VEC:.*]] = "some_def"() : () -> vector<32x64xf32>
+//       CHECK-PROP: gpu.yield %[[VEC]] : vector<32x64xf32>
+//       CHECK-PROP: %[[EXTRACT:.*]] = vector.extract_strided_slice %[[W]]
+//  CHECK-PROP-SAME: {offsets = [0, 12], sizes = [1, 8], strides = [1, 1]} : vector<1x64xf32> to vector<1x8xf32>
+//       CHECK-PROP: return %[[EXTRACT]] : vector<1x8xf32>
+func.func @vector_extract_strided_slice_2d_distr_inner(%laneid: index) -> (vector<1x8xf32>) {
+  %r = gpu.warp_execute_on_lane_0(%laneid)[32] -> (vector<1x8xf32>) {
+    %0 = "some_def"() : () -> (vector<32x64xf32>)
+    %1 = vector.extract_strided_slice %0 { offsets = [0, 12], sizes = [32, 8], strides = [1, 1]}
+      : vector<32x64xf32> to vector<32x8xf32>
+    gpu.yield %1 : vector<32x8xf32>
+  }
+  return %r : vector<1x8xf32>
+}
+
+// -----
+// CHECK-PROP-LABEL: func.func @vector_insert_strided_slice_1d_to_2d(
+//  CHECK-PROP-SAME: %[[LANEID:.*]]: index)
+//       CHECK-PROP: %[[W:.*]]:2 = gpu.warp_execute_on_lane_0({{.*}} -> (vector<1xf32>, vector<64x1xf32>) {
+//       CHECK-PROP: %[[SRC:.*]] = "some_def"() : () -> vector<32xf32>
+//       CHECK-PROP: %[[DEST:.*]] = "some_def"() : () -> vector<64x32xf32>
+//       CHECK-PROP: gpu.yield %[[SRC]], %[[DEST]] : vector<32xf32>, vector<64x32xf32>
+//       CHECK-PROP: %[[INSERT:.*]] = vector.insert_strided_slice %[[W]]#0, %[[W]]#1
+//  CHECK-PROP-SAME: {offsets = [18, 0], strides = [1]} : vector<1xf32> into vector<64x1xf32>
+//       CHECK-PROP: return %[[INSERT]] : vector<64x1xf32>
+func.func @vector_insert_strided_slice_1d_to_2d(%laneid: index) -> (vector<64x1xf32>) {
+  %r = gpu.warp_execute_on_lane_0(%laneid)[32] -> (vector<64x1xf32>) {
+    %0 = "some_def"() : () -> (vector<32xf32>)
+    %1 = "some_def"() : () -> (vector<64x32xf32>)
+    %2 = vector.insert_strided_slice %0, %1 { offsets = [18, 0], strides = [1]}
+      : vector<32xf32> into vector<64x32xf32>
+    gpu.yield %2 : vector<64x32xf32>
+  }
+  return %r : vector<64x1xf32>
+}
+
+// -----
+// CHECK-PROP-LABEL: func.func @vector_insert_strided_slice_2d_to_2d(
+//  CHECK-PROP-SAME: %[[LANEID:.*]]: index)
+//       CHECK-PROP: %[[W:.*]]:2 = gpu.warp_execute_on_lane_0{{.*}} -> (vector<16x1xf32>, vector<64x1xf32>) {
+//       CHECK-PROP: %[[SRC:.*]] = "some_def"() : () -> vector<16x32xf32>
+//       CHECK-PROP: %[[DEST:.*]] = "some_def"() : () -> vector<64x32xf32>
+//       CHECK-PROP: gpu.yield %[[SRC]], %[[DEST]] : vector<16x32xf32>, vector<64x32xf32>
+//       CHECK-PROP: %[[INSERT:.*]] = vector.insert_strided_slice %[[W]]#0, %[[W]]#1 {offsets = [36, 0], strides = [1, 1]} :
+//  CHECK-PROP-SAME: vector<16x1xf32> into vector<64x1xf32>
+//       CHECK-PROP: return %[[INSERT]] : vector<64x1xf32>
+func.func @vector_insert_strided_slice_2d_to_2d(%laneid: index) -> (vector<64x1xf32>) {
+  %r = gpu.warp_execute_on_lane_0(%laneid)[32] -> (vector<64x1xf32>) {
+    %0 = "some_def"() : () -> (vector<16x32xf32>)
+    %1 = "some_def"() : () -> (vector<64x32xf32>)
+    %2 = vector.insert_strided_slice %0, %1 { offsets = [36, 0],  strides = [1, 1]}
+      : vector<16x32xf32> into vector<64x32xf32>
+    gpu.yield %2 : vector<64x32xf32>
+  }
+  return %r : vector<64x1xf32>
+}
+
 // -----
 
 // Make sure that all operands of the transfer_read op are properly propagated.

@llvmbot
Copy link
Member

llvmbot commented Jun 23, 2025

@llvm/pr-subscribers-mlir-vector

Author: Charitha Saumya (charithaintc)

Changes

This PR adds initial support for vector.extract_strided_slice and vector.insert_strided_slice ops in vector distribution.

Initial support assumes that sinking both these ops do not require any cross lane comm. This requires,

  • Only a single dim is distributed.

For extract_strided_slice

  • extracted source vector must have rank greater than 1.
  • extraction happens in non distributed dims. (distributed dim is fully extracted).

For insert_strided_slice

  • Both inserted value (kD) and dest (nD) vectors are distributed (no broadcasting is involved). this require that distributed dimension is contained with the last k dims of the dest vector.

(Check code comments for more details)


Full diff: https://github.com/llvm/llvm-project/pull/145421.diff

2 Files Affected:

  • (modified) mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp (+210-10)
  • (modified) mlir/test/Dialect/Vector/vector-warp-distribute.mlir (+80)
diff --git a/mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp b/mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp
index 045c192787f10..297bb40cbb334 100644
--- a/mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp
+++ b/mlir/lib/Dialect/Vector/Transforms/VectorDistribute.cpp
@@ -15,9 +15,12 @@
 #include "mlir/Dialect/Vector/IR/VectorOps.h"
 #include "mlir/Dialect/Vector/Transforms/VectorDistribution.h"
 #include "mlir/IR/AffineExpr.h"
+#include "mlir/IR/Attributes.h"
+#include "mlir/IR/BuiltinTypes.h"
 #include "mlir/Interfaces/SideEffectInterfaces.h"
 #include "mlir/Transforms/RegionUtils.h"
 #include "llvm/ADT/SetVector.h"
+#include "llvm/ADT/SmallVectorExtras.h"
 #include "llvm/Support/FormatVariadic.h"
 #include <utility>
 
@@ -52,6 +55,21 @@ static AffineMap calculateImplicitMap(VectorType sequentialType,
   return map;
 }
 
+static int getDistributedDim(VectorType origType, VectorType distributedType) {
+  assert(origType.getRank() == distributedType.getRank() &&
+         "sequential and distributed vector types must have the same rank");
+  int64_t distributedDim = -1;
+  for (int64_t i = 0; i < origType.getRank(); ++i) {
+    if (distributedType.getDimSize(i) != origType.getDimSize(i)) {
+      // Keep this assert here in case WarpExecuteOnLane0Op gets extended to
+      // support distributing multiple dimensions in the future.
+      assert(distributedDim == -1 && "found multiple distributed dims");
+      distributedDim = i;
+    }
+  }
+  return distributedDim;
+}
+
 namespace {
 
 /// Helper struct to create the load / store operations that permit transit
@@ -1076,6 +1094,195 @@ struct WarpOpCreateMask : public WarpDistributionPattern {
   }
 };
 
+/// Sink out insert_strided_slice op feeding into a warp op yield.
+/// ```
+/// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<8x1xf32>) {
+///   ...
+///   %src = ... : vector<4x16xf32>
+///   %dest = ... : vector<8x16xf32>
+///   %insert = vector.insert_strided_slice %src, %dest, offsets = [0, 0],
+///     strides = [1, 1] : vector<4x16xf32> into vector<8x16xf32>
+///   gpu.yield %insert : vector<8x16xf32>
+/// }
+/// ```
+/// To
+/// ```
+/// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<4x1xf32>,
+/// vector<8x1xf32>) {
+///   ...
+///   %src = ... : vector<4x16xf32>
+///   %dest = ... : vector<8x16xf32>
+///   gpu.yield %src, %dest : vector<4x16xf32>, vector<8x16xf32>
+/// }
+/// %insert = vector.insert_strided_slice %0#0, %0#1,
+///   offsets = [0, 0], strides = [1, 1] : vector<4x1xf32> into vector<8x1xf32>
+/// ```
+/// NOTE: Current support assume that both src and dest vectors are distributed
+/// to lanes and sinking the insert op does not require any cross lane
+/// communication.
+struct WarpOpInsertStridedSlice : public WarpDistributionPattern {
+  using Base::Base;
+  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
+                                PatternRewriter &rewriter) const override {
+    OpOperand *operand =
+        getWarpResult(warpOp, llvm::IsaPred<vector::InsertStridedSliceOp>);
+    if (!operand)
+      return failure();
+    unsigned int operandNumber = operand->getOperandNumber();
+    auto insertOp =
+        operand->get().getDefiningOp<vector::InsertStridedSliceOp>();
+    auto distributedType =
+        cast<VectorType>(warpOp.getResult(operandNumber).getType());
+    // Distributed type must be 2D or higher.
+    // TODO: Support 1D distributed types.
+    if (distributedType.getRank() < 2)
+      return rewriter.notifyMatchFailure(
+          insertOp, "result vector type must be 2D or higher");
+    // Find the distributed dimension of the dest vector. There should be
+    // exactly one.
+    auto yieldedType = cast<VectorType>(operand->get().getType());
+    int64_t destDistributedDim =
+        getDistributedDim(yieldedType, distributedType);
+    assert(destDistributedDim != -1 && "could not find distributed dimension");
+    (void)destDistributedDim;
+    VectorType srcType = insertOp.getSourceVectorType();
+    VectorType destType = insertOp.getDestVectorType();
+    // Currently we require that both source (kD) and dest (nD) vectors are
+    // distributed. This requires that distributedDim (d) is contained in the
+    // last k dims of the dest vector (d >= n - k).
+    // TODO: Add support for case where source vector is not distributed.
+    int64_t sourceDistributedDim =
+        destDistributedDim - (destType.getRank() - srcType.getRank());
+    if (sourceDistributedDim < 0)
+      return rewriter.notifyMatchFailure(
+          insertOp, "distributed dimension must be in the last k dims");
+    // Distributed dimension must be fully inserted.
+    if (srcType.getDimSize(sourceDistributedDim) !=
+        destType.getDimSize(destDistributedDim))
+      return rewriter.notifyMatchFailure(
+          insertOp, "distributed dimension must be fully inserted");
+    SmallVector<int64_t> newSourceDistShape(
+        insertOp.getSourceVectorType().getShape()),
+        newDestDistShape(insertOp.getDestVectorType().getShape());
+    newSourceDistShape[sourceDistributedDim] =
+        distributedType.getDimSize(destDistributedDim);
+    newDestDistShape[destDistributedDim] =
+        distributedType.getDimSize(destDistributedDim);
+    auto newSourceTy =
+        VectorType::get(newSourceDistShape, distributedType.getElementType());
+    auto newDestTy =
+        VectorType::get(newDestDistShape, distributedType.getElementType());
+    SmallVector<size_t> newRetIndices;
+    WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
+        rewriter, warpOp, {insertOp.getValueToStore(), insertOp.getDest()},
+        {newSourceTy, newDestTy}, newRetIndices);
+    rewriter.setInsertionPointAfter(newWarpOp);
+    auto distributedSource = newWarpOp->getResult(newRetIndices[0]);
+    auto distributedDest = newWarpOp->getResult(newRetIndices[1]);
+    // Create a new insert strided slice op that inserts distributed source into
+    // distributed dest.
+    Value newInsert = rewriter.create<vector::InsertStridedSliceOp>(
+        insertOp.getLoc(), distributedDest.getType(), distributedSource,
+        distributedDest, insertOp.getOffsets(), insertOp.getStrides());
+    rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber), newInsert);
+    return success();
+  }
+};
+
+/// Sink out extract_strided_slice op feeding into a warp op yield.
+/// ```
+/// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<16x1xf32>) {
+///   ...
+///   %src = ... : vector<32x16xf32>
+///   %extract = vector.extract_strided_slice %src, offsets = [0], sizes = [16],
+///     strides = [1] : vector<32x16xf32> to vector<16x16xf32>
+///   gpu.yield %extract : vector<16x16xf32>
+/// }
+/// ```
+/// To
+/// ````
+/// %0 = gpu.warp_execute_on_lane_0(%arg0) -> (vector<32x1xf32>) {
+///   ...
+///   %src = ... : vector<32x16xf32>
+///   gpu.yield %src : vector<32x16xf32>
+/// }
+/// %extract = vector.extract_strided_slice %0, offsets = [0], sizes = [16],
+///   strides = [1] : vector<32x1xf32> to vector<16x1xf32>
+/// ```
+/// NOTE: Current support assumes that the extraction happens only on non
+/// distributed dimensions (does not require cross lane communication).
+struct WarpOpExtractStridedSlice : public WarpDistributionPattern {
+  using Base::Base;
+  LogicalResult matchAndRewrite(WarpExecuteOnLane0Op warpOp,
+                                PatternRewriter &rewriter) const override {
+    OpOperand *operand =
+        getWarpResult(warpOp, llvm::IsaPred<vector::ExtractStridedSliceOp>);
+    if (!operand)
+      return failure();
+    unsigned int operandNumber = operand->getOperandNumber();
+    auto extractOp =
+        operand->get().getDefiningOp<vector::ExtractStridedSliceOp>();
+    auto distributedType =
+        cast<VectorType>(warpOp.getResult(operandNumber).getType());
+    // Distributed type must be 2D or higher.
+    // TODO: Support 1D distributed types.
+    if (distributedType.getRank() < 2)
+      return rewriter.notifyMatchFailure(
+          extractOp, "result vector type must be 2D or higher");
+
+    // Find the distributed dimension. There should be exactly one.
+    auto yieldedType = cast<VectorType>(operand->get().getType());
+    int64_t distributedDim = getDistributedDim(yieldedType, distributedType);
+    assert(distributedDim != -1 && "could not find distributed dimension");
+    (void)distributedDim;
+
+    // Distributed dimension must be fully extracted.
+    // TODO: Partial extraction from distributed dimension require cross lane
+    // communication.
+    if (distributedDim < static_cast<int64_t>(extractOp.getSizes().size())) {
+      int64_t distributedDimOffset =
+          llvm::cast<IntegerAttr>(extractOp.getOffsets()[distributedDim])
+              .getInt();
+      int64_t distributedDimSize =
+          llvm::cast<IntegerAttr>(extractOp.getSizes()[distributedDim])
+              .getInt();
+      if (distributedDimOffset != 0 ||
+          distributedDimSize != yieldedType.getDimSize(distributedDim))
+        return rewriter.notifyMatchFailure(
+            extractOp, "distributed dimension must be fully extracted");
+    }
+    SmallVector<int64_t> newDistributedShape(
+        extractOp.getSourceVectorType().getShape());
+    newDistributedShape[distributedDim] =
+        distributedType.getDimSize(distributedDim);
+    auto newDistributedType =
+        VectorType::get(newDistributedShape, distributedType.getElementType());
+    SmallVector<size_t> newRetIndices;
+    WarpExecuteOnLane0Op newWarpOp = moveRegionToNewWarpOpAndAppendReturns(
+        rewriter, warpOp, {extractOp.getVector()}, {newDistributedType},
+        newRetIndices);
+    rewriter.setInsertionPointAfter(newWarpOp);
+    SmallVector<Attribute> distributedSizes = llvm::map_to_vector(
+        extractOp.getSizes(), [](Attribute attr) { return attr; });
+    // Update the distributed sizes to match the distributed type.
+    if (distributedDim < static_cast<int64_t>(distributedSizes.size()))
+      distributedSizes[distributedDim] = rewriter.getI64IntegerAttr(
+          distributedType.getDimSize(distributedDim));
+
+    // Create a new extract strided slice op that extracts from the
+    // distributed vector.
+    Value distributedVec = newWarpOp->getResult(newRetIndices[0]);
+    Value newExtract = rewriter.create<vector::ExtractStridedSliceOp>(
+        extractOp.getLoc(), distributedType, distributedVec,
+        extractOp.getOffsets(),
+        ArrayAttr::get(rewriter.getContext(), distributedSizes),
+        extractOp.getStrides());
+    rewriter.replaceAllUsesWith(newWarpOp->getResult(operandNumber),
+                                newExtract);
+    return success();
+  }
+};
+
 /// Pattern to move out vector.extract of single element vector. Those don't
 /// need to be distributed and can just be propagated outside of the region.
 struct WarpOpExtract : public WarpDistributionPattern {
@@ -1122,15 +1329,7 @@ struct WarpOpExtract : public WarpDistributionPattern {
     auto distributedType =
         cast<VectorType>(warpOp.getResult(operandNumber).getType());
     auto yieldedType = cast<VectorType>(operand->get().getType());
-    int64_t distributedDim = -1;
-    for (int64_t i = 0; i < yieldedType.getRank(); ++i) {
-      if (distributedType.getDimSize(i) != yieldedType.getDimSize(i)) {
-        // Keep this assert here in case WarpExecuteOnLane0Op gets extended to
-        // support distributing multiple dimensions in the future.
-        assert(distributedDim == -1 && "found multiple distributed dims");
-        distributedDim = i;
-      }
-    }
+    int64_t distributedDim = getDistributedDim(yieldedType, distributedType);
     assert(distributedDim != -1 && "could not find distributed dimension");
     (void)distributedDim;
 
@@ -1764,7 +1963,8 @@ void mlir::vector::populatePropagateWarpVectorDistributionPatterns(
   patterns.add<WarpOpElementwise, WarpOpDeadResult, WarpOpBroadcast,
                WarpOpShapeCast, WarpOpExtract, WarpOpForwardOperand,
                WarpOpConstant, WarpOpExtractElement, WarpOpInsertElement,
-               WarpOpInsertScalar, WarpOpInsert, WarpOpCreateMask>(
+               WarpOpInsertScalar, WarpOpInsert, WarpOpCreateMask,
+               WarpOpExtractStridedSlice, WarpOpInsertStridedSlice>(
       patterns.getContext(), benefit);
   patterns.add<WarpOpExtractScalar>(patterns.getContext(), warpShuffleFromIdxFn,
                                     benefit);
diff --git a/mlir/test/Dialect/Vector/vector-warp-distribute.mlir b/mlir/test/Dialect/Vector/vector-warp-distribute.mlir
index 38771f2593449..8c3060c91f0d1 100644
--- a/mlir/test/Dialect/Vector/vector-warp-distribute.mlir
+++ b/mlir/test/Dialect/Vector/vector-warp-distribute.mlir
@@ -1296,6 +1296,86 @@ func.func @vector_insert_2d_broadcast(%laneid: index) -> (vector<4x96xf32>) {
   return %r : vector<4x96xf32>
 }
 
+// -----
+// CHECK-PROP-LABEL: func.func @vector_extract_strided_slice_2d_distr_outer(
+//  CHECK-RPOP-SAME: %[[LANEID:.*]]: index
+//       CHECK-PROP: %[[W:.*]] = gpu.warp_execute_on_lane_0{{.*}} -> (vector<64x1xf32>) {
+//       CHECK-PROP: %[[VEC:.*]] = "some_def"() : () -> vector<64x32xf32>
+//       CHECK-PROP: gpu.yield %[[VEC]] : vector<64x32xf32>
+//       CHECK-PROP: %[[EXTRACT:.*]] = vector.extract_strided_slice %[[W]]
+//  CHECK-PROP-SAME: {offsets = [8], sizes = [24], strides = [1]} : vector<64x1xf32> to vector<24x1xf32>
+//       CHECK-PROP: return %[[EXTRACT]] : vector<24x1xf32>
+func.func @vector_extract_strided_slice_2d_distr_outer(%laneid: index) -> (vector<24x1xf32>) {
+  %r = gpu.warp_execute_on_lane_0(%laneid)[32] -> (vector<24x1xf32>) {
+    %0 = "some_def"() : () -> (vector<64x32xf32>)
+    %1 = vector.extract_strided_slice %0 { offsets = [8], sizes = [24], strides = [1]}
+      : vector<64x32xf32> to vector<24x32xf32>
+    gpu.yield %1 : vector<24x32xf32>
+  }
+  return %r : vector<24x1xf32>
+}
+
+// -----
+// CHECK-PROP-LABEL: func.func @vector_extract_strided_slice_2d_distr_inner(
+//  CHECK-PROP-SAME: %[[LANEID:.*]]: index
+//       CHECK-PROP: %[[W:.*]] = gpu.warp_execute_on_lane_0{{.*}} -> (vector<1x64xf32>) {
+//       CHECK-PROP: %[[VEC:.*]] = "some_def"() : () -> vector<32x64xf32>
+//       CHECK-PROP: gpu.yield %[[VEC]] : vector<32x64xf32>
+//       CHECK-PROP: %[[EXTRACT:.*]] = vector.extract_strided_slice %[[W]]
+//  CHECK-PROP-SAME: {offsets = [0, 12], sizes = [1, 8], strides = [1, 1]} : vector<1x64xf32> to vector<1x8xf32>
+//       CHECK-PROP: return %[[EXTRACT]] : vector<1x8xf32>
+func.func @vector_extract_strided_slice_2d_distr_inner(%laneid: index) -> (vector<1x8xf32>) {
+  %r = gpu.warp_execute_on_lane_0(%laneid)[32] -> (vector<1x8xf32>) {
+    %0 = "some_def"() : () -> (vector<32x64xf32>)
+    %1 = vector.extract_strided_slice %0 { offsets = [0, 12], sizes = [32, 8], strides = [1, 1]}
+      : vector<32x64xf32> to vector<32x8xf32>
+    gpu.yield %1 : vector<32x8xf32>
+  }
+  return %r : vector<1x8xf32>
+}
+
+// -----
+// CHECK-PROP-LABEL: func.func @vector_insert_strided_slice_1d_to_2d(
+//  CHECK-PROP-SAME: %[[LANEID:.*]]: index)
+//       CHECK-PROP: %[[W:.*]]:2 = gpu.warp_execute_on_lane_0({{.*}} -> (vector<1xf32>, vector<64x1xf32>) {
+//       CHECK-PROP: %[[SRC:.*]] = "some_def"() : () -> vector<32xf32>
+//       CHECK-PROP: %[[DEST:.*]] = "some_def"() : () -> vector<64x32xf32>
+//       CHECK-PROP: gpu.yield %[[SRC]], %[[DEST]] : vector<32xf32>, vector<64x32xf32>
+//       CHECK-PROP: %[[INSERT:.*]] = vector.insert_strided_slice %[[W]]#0, %[[W]]#1
+//  CHECK-PROP-SAME: {offsets = [18, 0], strides = [1]} : vector<1xf32> into vector<64x1xf32>
+//       CHECK-PROP: return %[[INSERT]] : vector<64x1xf32>
+func.func @vector_insert_strided_slice_1d_to_2d(%laneid: index) -> (vector<64x1xf32>) {
+  %r = gpu.warp_execute_on_lane_0(%laneid)[32] -> (vector<64x1xf32>) {
+    %0 = "some_def"() : () -> (vector<32xf32>)
+    %1 = "some_def"() : () -> (vector<64x32xf32>)
+    %2 = vector.insert_strided_slice %0, %1 { offsets = [18, 0], strides = [1]}
+      : vector<32xf32> into vector<64x32xf32>
+    gpu.yield %2 : vector<64x32xf32>
+  }
+  return %r : vector<64x1xf32>
+}
+
+// -----
+// CHECK-PROP-LABEL: func.func @vector_insert_strided_slice_2d_to_2d(
+//  CHECK-PROP-SAME: %[[LANEID:.*]]: index)
+//       CHECK-PROP: %[[W:.*]]:2 = gpu.warp_execute_on_lane_0{{.*}} -> (vector<16x1xf32>, vector<64x1xf32>) {
+//       CHECK-PROP: %[[SRC:.*]] = "some_def"() : () -> vector<16x32xf32>
+//       CHECK-PROP: %[[DEST:.*]] = "some_def"() : () -> vector<64x32xf32>
+//       CHECK-PROP: gpu.yield %[[SRC]], %[[DEST]] : vector<16x32xf32>, vector<64x32xf32>
+//       CHECK-PROP: %[[INSERT:.*]] = vector.insert_strided_slice %[[W]]#0, %[[W]]#1 {offsets = [36, 0], strides = [1, 1]} :
+//  CHECK-PROP-SAME: vector<16x1xf32> into vector<64x1xf32>
+//       CHECK-PROP: return %[[INSERT]] : vector<64x1xf32>
+func.func @vector_insert_strided_slice_2d_to_2d(%laneid: index) -> (vector<64x1xf32>) {
+  %r = gpu.warp_execute_on_lane_0(%laneid)[32] -> (vector<64x1xf32>) {
+    %0 = "some_def"() : () -> (vector<16x32xf32>)
+    %1 = "some_def"() : () -> (vector<64x32xf32>)
+    %2 = vector.insert_strided_slice %0, %1 { offsets = [36, 0],  strides = [1, 1]}
+      : vector<16x32xf32> into vector<64x32xf32>
+    gpu.yield %2 : vector<64x32xf32>
+  }
+  return %r : vector<64x1xf32>
+}
+
 // -----
 
 // Make sure that all operands of the transfer_read op are properly propagated.

@charithaintc
Copy link
Contributor Author

@Garra1980 please have a look.

// Distributed dimension must be fully extracted.
// TODO: Partial extraction from distributed dimension require cross lane
// communication.
if (distributedDim < static_cast<int64_t>(extractOp.getSizes().size())) {
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Consider giving a proper name for this expression to improve readability "static_cast<int64_t>(extractOp.getSizes().size())". Something like extractedVecRank

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

renamed to extractedDimsRank

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I felt like numOfExtractedDims is a more appropriate name. so changed it again.

%r = gpu.warp_execute_on_lane_0(%laneid)[32] -> (vector<64x1xf32>) {
%0 = "some_def"() : () -> (vector<16x32xf32>)
%1 = "some_def"() : () -> (vector<64x32xf32>)
%2 = vector.insert_strided_slice %0, %1 { offsets = [36, 0], strides = [1, 1]}
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

should restrict the offset along the distribution dim to be multiple of subgroup size. For example, offsets = [36, 1] should be rejected.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

in this version, distributed dimension is fully inserted (offset is always 0). I will add support for other cases in separate PRs.
Example:

func.func @vector_insert_strided_slice_2d_to_2d(%laneid: index) -> (vector<64x2xf32>) {
  %r = gpu.warp_execute_on_lane_0(%laneid)[32] -> (vector<64x2xf32>) {
    %0 = "some_def"() : () -> (vector<16x32xf32>)
    %1 = "some_def"() : () -> (vector<64x64xf32>)
    %2 = vector.insert_strided_slice %0, %1 { offsets = [36, 1],  strides = [1, 1]}
      : vector<16x32xf32> into vector<64x64xf32>
    gpu.yield %2 : vector<64x64xf32>
  }
  return %r : vector<64x2xf32>
}

Lowering filters out this case by checking,

    // Distributed dimension must be fully inserted.
    if (srcType.getDimSize(sourceDistributedDim) !=
        destType.getDimSize(destDistributedDim))
      return rewriter.notifyMatchFailure(
          insertOp, "distributed dimension must be fully inserted");

return rewriter.notifyMatchFailure(
insertOp, "distributed dimension must be in the last k dims");
// Distributed dimension must be fully inserted.
if (srcType.getDimSize(sourceDistributedDim) !=
Copy link
Contributor

@Jianhui-Li Jianhui-Li Jun 24, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What is the reason we disallow distributing the following case? I think the distribution should work as long as offsets are multiple of subgroup size.
/// %insert = vector.insert_strided_slice %src, %dest, offsets = [0, 32],
/// strides = [1, 1] : vector<8x32xf32> into vector<8x64xf32>

=> suppose subgroup size = 32
/// %insert = vector.insert_strided_slice %src, %dest, offsets = [0, 1],
/// strides = [1, 1] : vector<8x1xf32> into vector<8x2xf32>

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

As discussed, this will be added in separate PR after some investigation into other upstream patterns. Current support make no assumption about what data is owned by what lane.

// Distributed dimension must be fully extracted.
// TODO: Partial extraction from distributed dimension require cross lane
// communication.
if (distributedDim < static_cast<int64_t>(extractOp.getSizes().size())) {

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

what about "else" case here?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

good question. Else case here means that distributed dimension is already fully extracted. So we are good to go anyway. We need a check if the distributed dim is included in the extracted dims. in vector.extract_strided op only the first k dims of an n-D vector can be partially extracted. remaining last n-k dims are fully extracted by default. here n >= k.

@Garra1980
Copy link

@Garra1980 please have a look.

Looks good to me % existing comments

@llvmbot llvmbot added the mlir label Jun 25, 2025
@charithaintc
Copy link
Contributor Author

@adam-smnk @chencha3 Please take a look if you have bandwidth.

Copy link
Contributor

@chencha3 chencha3 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Generally, it looks to me. left some nit comments.

if (distributedType.getDimSize(i) != sequentialType.getDimSize(i)) {
// Keep this assert here in case WarpExecuteOnLane0Op gets extended to
// support distributing multiple dimensions in the future.
assert(distributedDim == -1 && "found multiple distributed dims");
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

How about return a failure if there is more than one dim mismatch? it could avoid the crash of the pass.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this code was already there. I moved it to a function to reuse.

I think the motivation of the assert is that the pass strictly assumes only 1 dim is distributed. assert is there to add more support later. lets keep it for now so that crash is isolated to this pass.

auto yieldedType = cast<VectorType>(operand->get().getType());
int64_t destDistributedDim =
getDistributedDim(yieldedType, distributedType);
assert(destDistributedDim != -1 && "could not find distributed dimension");
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

How about return failure or notifyMatchFailure?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

existing patterns assume always 1 dimension is distributed (check warpOpExtract). lets keep the assert for now due to this assumption.

insertOp, "distributed dimension must be fully inserted");
SmallVector<int64_t> newSourceDistShape(
insertOp.getSourceVectorType().getShape()),
newDestDistShape(insertOp.getDestVectorType().getShape());
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is newDestDistShape equivalent to the shape of distributedType?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

good catch. I removed it. thanks.

distributedType.getDimSize(destDistributedDim);
auto newSourceTy =
VectorType::get(newSourceDistShape, distributedType.getElementType());
auto newDestTy =
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is newDestTy the same as the distributedType?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

fixed.

// Find the distributed dimension. There should be exactly one.
auto yieldedType = cast<VectorType>(operand->get().getType());
int64_t distributedDim = getDistributedDim(yieldedType, distributedType);
assert(distributedDim != -1 && "could not find distributed dimension");
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

How about return failure or notifyMatchFailure?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

addressed above

@charithaintc charithaintc merged commit c539ec0 into llvm:main Jun 25, 2025
5 of 7 checks passed
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

Successfully merging this pull request may close these issues.

5 participants