Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,269 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "683953b3",
"metadata": {},
"source": [
"# Cassandra\n",
"\n",
">[Apache Cassandra®](https://cassandra.apache.org) is a NoSQL, row-oriented, highly scalable and highly available database.\n",
"\n",
"Newest Cassandra releases natively [support](https://cwiki.apache.org/confluence/display/CASSANDRA/CEP-30%3A+Approximate+Nearest+Neighbor(ANN)+Vector+Search+via+Storage-Attached+Indexes) Vector Similarity Search.\n",
"\n",
"To run this notebook you need either a running Cassandra cluster equipped with Vector Search capabilities (in pre-release at the time of writing) or a DataStax Astra DB instance running in the cloud (you can get one for free at [datastax.com](https://astra.datastax.com)). Check [cassio.org](https://cassio.org/start_here/) for more information."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b4c41cad-08ef-4f72-a545-2151e4598efe",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"!pip install \"cassio>=0.0.5\""
]
},
{
"cell_type": "markdown",
"id": "b7e46bb0",
"metadata": {},
"source": [
"### Please provide database connection parameters and secrets:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "36128a32",
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import getpass\n",
"\n",
"database_mode = (input('\\n(L)ocal Cassandra or (A)stra DB? ')).upper()\n",
"\n",
"keyspace_name = input('\\nKeyspace name? ')\n",
"\n",
"if database_mode == 'A':\n",
" ASTRA_DB_APPLICATION_TOKEN = getpass.getpass('\\nAstra DB Token (\"AstraCS:...\") ')\n",
" #\n",
" ASTRA_DB_SECURE_BUNDLE_PATH = input('Full path to your Secure Connect Bundle? ')"
]
},
{
"cell_type": "markdown",
"id": "4f22aac2",
"metadata": {},
"source": [
"#### depending on whether local or cloud-based Astra DB, create the corresponding database connection \"Session\" object"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "677f8576",
"metadata": {},
"outputs": [],
"source": [
"from cassandra.cluster import Cluster\n",
"from cassandra.auth import PlainTextAuthProvider\n",
"\n",
"if database_mode == 'L':\n",
" cluster = Cluster()\n",
" session = cluster.connect()\n",
"elif database_mode == 'A':\n",
" ASTRA_DB_CLIENT_ID = \"token\"\n",
" cluster = Cluster(\n",
" cloud={\n",
" \"secure_connect_bundle\": ASTRA_DB_SECURE_BUNDLE_PATH,\n",
" },\n",
" auth_provider=PlainTextAuthProvider(\n",
" ASTRA_DB_CLIENT_ID,\n",
" ASTRA_DB_APPLICATION_TOKEN,\n",
" ),\n",
" )\n",
" session = cluster.connect()\n",
"else:\n",
" raise NotImplementedError"
]
},
{
"cell_type": "markdown",
"id": "320af802-9271-46ee-948f-d2453933d44b",
"metadata": {},
"source": [
"### Please provide OpenAI access key\n",
"\n",
"We want to use `OpenAIEmbeddings` so we have to get the OpenAI API Key."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ffea66e4-bc23-46a9-9580-b348dfe7b7a7",
"metadata": {},
"outputs": [],
"source": [
"os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API Key:')"
]
},
{
"cell_type": "markdown",
"id": "e98a139b",
"metadata": {},
"source": [
"### Creation and usage of the Vector Store"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "aac9563e",
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.embeddings.openai import OpenAIEmbeddings\n",
"from langchain.text_splitter import CharacterTextSplitter\n",
"from langchain.vectorstores import Cassandra\n",
"from langchain.document_loaders import TextLoader"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a3c3999a",
"metadata": {},
"outputs": [],
"source": [
"from langchain.document_loaders import TextLoader\n",
"loader = TextLoader('../../../state_of_the_union.txt')\n",
"documents = loader.load()\n",
"text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)\n",
"docs = text_splitter.split_documents(documents)\n",
"\n",
"embedding_function = OpenAIEmbeddings()"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "6e104aee",
"metadata": {},
"outputs": [],
"source": [
"table_name = 'my_vector_db_table'\n",
"\n",
"docsearch = Cassandra.from_documents(\n",
" documents=docs,\n",
" embedding=embedding_function,\n",
" session=session,\n",
" keyspace=keyspace_name,\n",
" table_name=table_name,\n",
")\n",
"\n",
"query = \"What did the president say about Ketanji Brown Jackson\"\n",
"docs = docsearch.similarity_search(query)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "f509ee02",
"metadata": {},
"outputs": [],
"source": [
"## if you already have an index, you can load it and use it like this:\n",
"\n",
"# docsearch_preexisting = Cassandra(\n",
"# embedding=embedding_function,\n",
"# session=session,\n",
"# keyspace=keyspace_name,\n",
"# table_name=table_name,\n",
"# )\n",
"\n",
"# docsearch_preexisting.similarity_search(query, k=2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9c608226",
"metadata": {},
"outputs": [],
"source": [
"print(docs[0].page_content)"
]
},
{
"cell_type": "markdown",
"id": "d46d1452",
"metadata": {},
"source": [
"### Maximal Marginal Relevance Searches\n",
"\n",
"In addition to using similarity search in the retriever object, you can also use `mmr` as retriever.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "a359ed74",
"metadata": {},
"outputs": [],
"source": [
"retriever = docsearch.as_retriever(search_type=\"mmr\")\n",
"matched_docs = retriever.get_relevant_documents(query)\n",
"for i, d in enumerate(matched_docs):\n",
" print(f\"\\n## Document {i}\\n\")\n",
" print(d.page_content)"
]
},
{
"cell_type": "markdown",
"id": "7c477287",
"metadata": {},
"source": [
"Or use `max_marginal_relevance_search` directly:"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "9ca82740",
"metadata": {},
"outputs": [],
"source": [
"found_docs = docsearch.max_marginal_relevance_search(query, k=2, fetch_k=10)\n",
"for i, doc in enumerate(found_docs):\n",
" print(f\"{i + 1}.\", doc.page_content, \"\\n\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.10"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
2 changes: 2 additions & 0 deletions langchain/vectorstores/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
from langchain.vectorstores.awadb import AwaDB
from langchain.vectorstores.azuresearch import AzureSearch
from langchain.vectorstores.base import VectorStore
from langchain.vectorstores.cassandra import Cassandra
from langchain.vectorstores.chroma import Chroma
from langchain.vectorstores.clickhouse import Clickhouse, ClickhouseSettings
from langchain.vectorstores.deeplake import DeepLake
Expand Down Expand Up @@ -37,6 +38,7 @@
"AtlasDB",
"AwaDB",
"AzureSearch",
"Cassandra",
"Chroma",
"Clickhouse",
"ClickhouseSettings",
Expand Down
Loading