A comprehensive framework for analyzing medical imaging pipelines with GPU acceleration, CPU processing, and detailed performance comparisons. This project provides deep insights into medical image processing performance, utilization patterns, and optimization strategies.
- GPU-Accelerated Analysis: Comprehensive GPU performance analysis with NVIDIA tools
- CPU Processing Analysis: CPU-only pipeline analysis for comparison
- Performance Comparison: Side-by-side GPU vs CPU performance metrics
- Medical Image Visualization: Multi-planar reconstruction, segmentation, and 3D rendering
- Utilization Monitoring: Real-time GPU/CPU utilization, memory, temperature, and power tracking
- Pipeline Deep Dive: Component-by-component analysis and optimization insights
- Augmentation Analysis: Complete medical image augmentation pipeline visualization
- Python 3.8+
- CUDA-compatible GPU (for GPU analysis)
- NVIDIA drivers and CUDA toolkit
- Medical imaging datasets (MedNIST included)
Comprehensive multi-planar reconstruction showing Axial, Coronal, and Sagittal views with GPU acceleration
Advanced segmentation overlays with confidence mapping and GPU-accelerated processing
Complete medical imaging report with comprehensive analysis and visualization
Side-by-side performance comparison showing GPU vs CPU metrics across all pipeline components
Comprehensive efficiency comparison including memory, power, and throughput optimization
Detailed performance metrics comparison with speedup ratios and efficiency gains
Multi-dimensional analysis showing GPU vs CPU performance across different metrics
Advanced GPU analysis demonstrating winning solution performance metrics and optimization strategies
- Clone the repository:
git clone https://github.com/kopalgarg/medical-imaging-pipeline.git
cd medical-imaging-pipeline
- Install dependencies:
pip install -r requirements.txt
- Verify GPU setup (optional):
nvidia-smi
python download_mednist.py
python comprehensive_gpu_analysis.py
python comprehensive_cpu_analysis.py
python enhanced_gpu_cpu_comparison.py
- Enhanced Visualizations: Multi-planar reconstruction, segmentation overlays, 3D rendering
- Utilization Patterns: Real-time GPU utilization, memory usage, temperature monitoring
- Augmentation Analysis: Complete augmentation pipeline with quality metrics
- Pipeline Deep Dive: Component analysis, performance bottlenecks, optimization insights
- Performance Metrics: Batch processing, throughput, memory efficiency, power efficiency
- CPU-Optimized Visualizations: Multi-planar views, segmentation, processing pipeline
- CPU Utilization: Core utilization patterns, memory usage, temperature monitoring
- CPU Augmentation: Augmentation pipeline optimized for CPU processing
- Pipeline Analysis: CPU component breakdown, performance characteristics
- Performance Metrics: CPU batch processing, throughput, efficiency analysis
- Performance Comparison: Side-by-side performance dashboards
- Utilization Comparison: Real-time utilization tracking comparison
- Augmentation Comparison: Pipeline timing, quality trade-offs, speedup analysis
- Pipeline Comparison: Component-by-component GPU vs CPU analysis
- Efficiency Analysis: Memory, power, and throughput efficiency comparisons
All analysis results are organized in the comprehensive_gpu_cpu_analysis_results/
directory with the following structure:
comprehensive_gpu_cpu_analysis_results/
├── gpu_results/ # GPU analysis results
│ ├── visualizations/ # GPU visualizations
│ │ ├── gpu_enhanced_multiplanar.png # Multi-planar reconstruction
│ │ ├── gpu_segmentation_analysis.png # Segmentation analysis
│ │ ├── demo_medical_report_visualization.png # Medical report demo
│ │ └── demo_comparison_visualization.png # Comparison demo
│ ├── utilization_patterns/ # GPU utilization analysis
│ ├── augmentation_analysis/ # GPU augmentation analysis
│ ├── pipeline_deep_dive/ # GPU pipeline analysis
│ ├── performance_analysis/ # GPU performance metrics
│ ├── reports/ # GPU analysis reports
│ ├── metrics/ # GPU performance data
│ └── winning_solution_analysis.png # Winning solution analysis
├── cpu_results/ # CPU analysis results
│ ├── visualizations/ # CPU visualizations
│ ├── utilization_patterns/ # CPU utilization analysis
│ ├── augmentation_analysis/ # CPU augmentation analysis
│ ├── pipeline_deep_dive/ # CPU pipeline analysis
│ ├── performance_analysis/ # CPU performance metrics
│ ├── reports/ # CPU analysis reports
│ └── metrics/ # CPU performance data
└── comparison_results/ # GPU vs CPU comparison results
├── performance_comparison/ # Performance comparison plots
│ ├── gpu_cpu_performance_dashboard.png # Main performance dashboard
│ └── gpu_cpu_performance_stats.json # Performance statistics
├── utilization_comparison/ # Utilization comparison analysis
├── augmentation_comparison/ # Augmentation comparison
├── pipeline_comparison/ # Pipeline comparison analysis
├── reports/ # Comparison reports
├── metrics/ # Comparison metrics
└── visualizations/ # Comparison visualizations
├── gpu_cpu_efficiency_analysis.png # Efficiency analysis
├── gpu_cpu_performance_comparison.png # Performance comparison
└── gpu_cpu_radar_chart.png # Radar chart analysis
# Modify analysis parameters in config.py
from config import *
# Custom GPU analysis
analyzer = ComprehensiveGPUAnalyzer()
analyzer.create_custom_analysis()
# Custom CPU analysis
analyzer = ComprehensiveCPUAnalyzer()
analyzer.create_custom_analysis()
# Custom comparison
comparator = EnhancedGPUCPUComparator()
comparator.create_custom_comparison()
# Import your custom pipeline
from your_pipeline import YourPipeline
# Analyze custom pipeline
pipeline = YourPipeline()
analyzer.analyze_custom_pipeline(pipeline)
# Run all analyses in sequence
python comprehensive_gpu_analysis.py && \
python comprehensive_cpu_analysis.py && \
python enhanced_gpu_cpu_comparison.py
- Utilization: GPU compute and memory utilization
- Throughput: Images processed per second
- Memory Efficiency: GPU memory usage optimization
- Power Efficiency: Watts per image processed
- Temperature: Thermal performance monitoring
- Core Utilization: Multi-core CPU usage patterns
- Memory Bandwidth: RAM usage and efficiency
- Processing Speed: CPU-only processing performance
- Power Consumption: CPU power efficiency
- Thermal Performance: CPU temperature monitoring
- Speedup Ratio: GPU vs CPU performance improvement
- Efficiency Gain: Resource utilization improvement
- Cost Analysis: Performance per watt comparison
- Scalability: Multi-device performance scaling
-
GPU Not Detected
nvidia-smi # Check GPU status python -c "import torch; print(torch.cuda.is_available())" # Check PyTorch CUDA
-
Memory Issues
# Reduce batch size in config.py BATCH_SIZE = 16 # Instead of 32 or 64
-
Import Errors
pip install -r requirements.txt --force-reinstall
-
Performance Issues
# Check GPU utilization watch -n 1 nvidia-smi # Monitor CPU usage htop
-
GPU Optimization
- Use mixed precision training
- Optimize batch sizes
- Enable tensor cores
- Monitor memory usage
-
CPU Optimization
- Utilize multi-threading
- Optimize memory access patterns
- Use CPU-optimized libraries
- Implement batch processing