Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions docs/train_network_README-ja.md
Original file line number Diff line number Diff line change
Expand Up @@ -102,6 +102,8 @@ accelerate launch --num_cpu_threads_per_process 1 train_network.py
* Text Encoderに関連するLoRAモジュールに、通常の学習率(--learning_rateオプションで指定)とは異なる学習率を使う時に指定します。Text Encoderのほうを若干低めの学習率(5e-5など)にしたほうが良い、という話もあるようです。
* `--network_args`
* 複数の引数を指定できます。後述します。
* `--alpha_mask`
* 画像のアルファ値をマスクとして使用します。透過画像を学習する際に使用します。[PR #1223](https://github.com/kohya-ss/sd-scripts/pull/1223)

`--network_train_unet_only` と `--network_train_text_encoder_only` の両方とも未指定時(デフォルト)はText EncoderとU-Netの両方のLoRAモジュールを有効にします。

Expand Down
2 changes: 2 additions & 0 deletions docs/train_network_README-zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -101,6 +101,8 @@ LoRA的模型将会被保存在通过`--output_dir`选项指定的文件夹中
* 当在Text Encoder相关的LoRA模块中使用与常规学习率(由`--learning_rate`选项指定)不同的学习率时,应指定此选项。可能最好将Text Encoder的学习率稍微降低(例如5e-5)。
* `--network_args`
* 可以指定多个参数。将在下面详细说明。
* `--alpha_mask`
* 使用图像的 Alpha 值作为遮罩。这在学习透明图像时使用。[PR #1223](https://github.com/kohya-ss/sd-scripts/pull/1223)

当未指定`--network_train_unet_only`和`--network_train_text_encoder_only`时(默认情况),将启用Text Encoder和U-Net的两个LoRA模块。

Expand Down
2 changes: 2 additions & 0 deletions library/config_util.py
Original file line number Diff line number Diff line change
Expand Up @@ -78,6 +78,7 @@ class BaseSubsetParams:
caption_tag_dropout_rate: float = 0.0
token_warmup_min: int = 1
token_warmup_step: float = 0
alpha_mask: bool = False


@dataclass
Expand Down Expand Up @@ -536,6 +537,7 @@ def generate_dataset_group_by_blueprint(dataset_group_blueprint: DatasetGroupBlu
random_crop: {subset.random_crop}
token_warmup_min: {subset.token_warmup_min},
token_warmup_step: {subset.token_warmup_step},
alpha_mask: {subset.alpha_mask},
"""
),
" ",
Expand Down
5 changes: 3 additions & 2 deletions library/custom_train_functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -479,9 +479,10 @@ def apply_noise_offset(latents, noise, noise_offset, adaptive_noise_scale):
return noise


def apply_masked_loss(loss, batch):
def apply_masked_loss(loss, mask_image):
# mask image is -1 to 1. we need to convert it to 0 to 1
mask_image = batch["conditioning_images"].to(dtype=loss.dtype)[:, 0].unsqueeze(1) # use R channel
# mask_image = batch["conditioning_images"].to(dtype=loss.dtype)[:, 0].unsqueeze(1) # use R channel
mask_image = mask_image.to(dtype=loss.dtype)

# resize to the same size as the loss
mask_image = torch.nn.functional.interpolate(mask_image, size=loss.shape[2:], mode="area")
Expand Down
Loading