Skip to content

Applying sumsquares() on the Ouput of a Infinity Norm Fails #722

@RoyiAvital

Description

@RoyiAvital

I am trying to optimize:

$$ \sum_{i = 1}^{n} {\left\| \boldsymbol{a}_{i} - \boldsymbol{x} \right\|}_{\infty}^{2} $$

Yet Convex.sumsquares() fails on the vector of values of ${\left\| \boldsymbol{a}_{i} - \boldsymbol{x} \right\|}_{\infty}^{2}$.
If I use sum() and not sumsquares() it works.
See code to replicate.

## Packages
using Convex;
using ECOS;

## Functions

function SolveProblemConvex( mA :: Matrix{T} ) where {T <: AbstractFloat}

    dataDim    = size(mA, 1);
    numSamples = size(mA, 2);

    vX = Variable(dataDim);

    vV        = [Convex.norm_inf(vX - mA[:, ii]) for ii  1:numSamples];
    sConvProb = minimize( Convex.sumsquares(vV) ); #<! Does not work
    # sConvProb = minimize( Convex.sum(vV) ); #<! Works
    
    Convex.solve!(sConvProb, ECOS.Optimizer; silent = true);

    return vX.value;
    
end

## Parameters
dataDim    = 5;
numSamples = 10;

## Data
mA = randn(dataDim, numSamples);

## Analysis
vX = SolveProblemConvex(mA);

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions