-
Notifications
You must be signed in to change notification settings - Fork 31.5k
Closed
Description
System Info
torch 2.1.1
transformers 4.35.2
CUDA 12.1
Who can help?
No response
Information
- The official example scripts
- My own modified scripts
Tasks
- An officially supported task in the
examplesfolder (such as GLUE/SQuAD, ...) - My own task or dataset (give details below)
Reproduction
In the latest version of transformers (4.35.2), in Trainer.__init__(), there is no option for use_cuda_amp, and consequently, in Trainer.autocast_smart_context_manager(), torch.cuda.amp.autocast() is not invoked, which will lead to runtime error during loss backward.
This is the __init__() part of version 4.35.2, which does not enable autocast for both fp16 and bf16:
# Mixed precision setup
self.use_apex = False
self.use_cpu_amp = False
# Mixed precision setup for SageMaker Model Parallel
if is_sagemaker_mp_enabled():
# BF16 + model parallelism in SageMaker: currently not supported, raise an error
if args.bf16:
raise ValueError("SageMaker Model Parallelism does not support BF16 yet. Please use FP16 instead ")
if IS_SAGEMAKER_MP_POST_1_10:
# When there's mismatch between SMP config and trainer argument, use SMP config as truth
if args.fp16 != smp.state.cfg.fp16:
logger.warning(
f"FP16 provided in SM_HP_MP_PARAMETERS is {smp.state.cfg.fp16}, "
f"but FP16 provided in trainer argument is {args.fp16}, "
f"setting to {smp.state.cfg.fp16}"
)
args.fp16 = smp.state.cfg.fp16
else:
# smp < 1.10 does not support fp16 in trainer.
if hasattr(smp.state.cfg, "fp16"):
logger.warning(
f"FP16 provided in SM_HP_MP_PARAMETERS is {smp.state.cfg.fp16}, "
"but SageMaker Model Parallelism < 1.10 does not support FP16 in trainer."
)
if (args.fp16 or args.bf16) and args.half_precision_backend == "auto":
if args.device == torch.device("cpu"):
if args.fp16:
raise ValueError("Tried to use `fp16` but it is not supported on cpu")
else:
args.half_precision_backend = "cpu_amp"
logger.info(f"Using {args.half_precision_backend} half precision backend")
if (args.fp16 or args.bf16) and not (self.is_deepspeed_enabled or is_sagemaker_mp_enabled()):
# deepspeed and SageMaker Model Parallel manage their own half precision
if args.half_precision_backend == "cpu_amp":
self.use_cpu_amp = True
self.amp_dtype = torch.bfloat16
elif args.half_precision_backend == "apex":
if not is_apex_available():
raise ImportError(
"Using FP16 with APEX but APEX is not installed, please refer to"
" https://www.github.com/nvidia/apex."
)
self.use_apex = True
Expected behavior
the same part of version 4.28.1 (which I know it works):
# Mixed precision setup
self.use_apex = False
self.use_cuda_amp = False
self.use_cpu_amp = False
# Mixed precision setup for SageMaker Model Parallel
if is_sagemaker_mp_enabled():
# BF16 + model parallelism in SageMaker: currently not supported, raise an error
if args.bf16:
raise ValueError("SageMaker Model Parallelism does not support BF16 yet. Please use FP16 instead ")
if IS_SAGEMAKER_MP_POST_1_10:
# When there's mismatch between SMP config and trainer argument, use SMP config as truth
if args.fp16 != smp.state.cfg.fp16:
logger.warning(
f"FP16 provided in SM_HP_MP_PARAMETERS is {smp.state.cfg.fp16},"
f"but FP16 provided in trainer argument is {args.fp16},"
f"setting to {smp.state.cfg.fp16}"
)
args.fp16 = smp.state.cfg.fp16
else:
# smp < 1.10 does not support fp16 in trainer.
if hasattr(smp.state.cfg, "fp16"):
logger.warning(
f"FP16 provided in SM_HP_MP_PARAMETERS is {smp.state.cfg.fp16}, "
"but SageMaker Model Parallelism < 1.10 does not support FP16 in trainer."
)
if args.fp16 or args.bf16:
if args.half_precision_backend == "auto":
if args.device == torch.device("cpu"):
if args.fp16:
raise ValueError("Tried to use `fp16` but it is not supported on cpu")
elif _is_native_cpu_amp_available:
args.half_precision_backend = "cpu_amp"
else:
raise ValueError("Tried to use cpu amp but native cpu amp is not available")
else:
args.half_precision_backend = "cuda_amp"
logger.info(f"Using {args.half_precision_backend} half precision backend")
#the following part is no longer needed because of the switch to accelerator, but add it just in case
self.do_grad_scaling = False
if (args.fp16 or args.bf16) and not (args.deepspeed or is_sagemaker_mp_enabled()):
# deepspeed and SageMaker Model Parallel manage their own half precision
if args.half_precision_backend == "cuda_amp":
self.use_cuda_amp = True
self.amp_dtype = torch.float16 if args.fp16 else torch.bfloat16
# bf16 does not need grad scaling
self.do_grad_scaling = self.amp_dtype == torch.float16
if self.do_grad_scaling:
if self.sharded_ddp is not None:
self.scaler = ShardedGradScaler()
elif self.fsdp is not None:
from torch.distributed.fsdp.sharded_grad_scaler import (
ShardedGradScaler as FSDPShardedGradScaler,
)
self.scaler = FSDPShardedGradScaler()
elif is_torch_tpu_available():
from torch_xla.amp import GradScaler
self.scaler = GradScaler()
else:
self.scaler = torch.cuda.amp.GradScaler()
elif args.half_precision_backend == "cpu_amp":
self.use_cpu_amp = True
self.amp_dtype = torch.bfloat16
else:
if not is_apex_available():
raise ImportError(
"Using FP16 with APEX but APEX is not installed, please refer to"
" https://www.github.com/nvidia/apex."
)
self.use_apex = True
My workaround is to derive Trainer and add the 4.28.1 part of code above after calling super().__init__(), and override autocast_smart_context_manager() with the same method in version 4.34.1.
Metadata
Metadata
Assignees
Labels
No labels