Skip to content

migrated to newer version of lightning #165

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion deepblast/dataset/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -406,7 +406,7 @@ def gap_mask(states: str, sparse=False):
if sparse:
return mat
else:
return mat.toarray().astype(np.bool)
return mat.toarray().astype(bool)


def window(seq, n=2):
Expand Down
28 changes: 7 additions & 21 deletions deepblast/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,7 @@ def __init__(self, batch_size=20,
):

super(DeepBLAST, self).__init__()
self.validation_step_outputs = []
self.save_hyperparameters(ignore=['lm', 'tokenizer'])

if device == 'gpu': # this is for users, in case they specify gpu
Expand All @@ -74,6 +75,7 @@ def __init__(self, batch_size=20,
n_input, n_units, n_embed, n_layers, dropout=dropout, lm=lm,
alignment_mode=alignment_mode,
device=device)
self.tokenizer = tokenizer

def align(self, x, y):
x_code = get_sequence(x, self.tokenizer)[0].to(self.device)
Expand Down Expand Up @@ -236,6 +238,7 @@ def validation_step(self, batch, batch_idx):
predA, theta, gap = self.aligner(seq, order)
x, xlen, y, ylen = unpack_sequences(seq, order)
loss = self.compute_loss(xlen, ylen, predA, A, P, G, theta)
self.validation_step_outputs.append(loss)

assert torch.isnan(loss).item() is False

Expand Down Expand Up @@ -291,27 +294,10 @@ def test_step(self, batch, batch_idx):
statistics['key_name'] = other_names
return statistics

def validation_epoch_end(self, outputs):
loss_f = lambda x: x['validation_loss']
losses = list(map(loss_f, outputs))
loss = sum(losses) / len(losses)
self.logger.experiment.add_scalar('val_loss', loss, self.global_step)
# self.log('validation_loss') = loss

# metrics = ['val_tp', 'val_fp', 'val_fn', 'val_perc_id',
# 'val_ppv', 'val_fnr', 'val_fdr']
# scores = []
# for i, m in enumerate(metrics):
# loss_f = lambda x: x['log'][m]
# losses = list(map(loss_f, outputs))
# scalar = sum(losses) / len(losses)
# scores.append(scalar)
# self.logger.experiment.add_scalar(m, scalar, self.global_step)

tensorboard_logs = dict(
[('val_loss', loss)] # + list(zip(metrics, scores))
)
return {'val_loss': loss, 'log': tensorboard_logs}
def on_validation_epoch_end(self):
epoch_average = torch.stack(self.validation_step_outputs).mean()
self.log("validation_epoch_average", epoch_average)
self.validation_step_outputs.clear() # free memory

def configure_optimizers(self):
# Freeze language model
Expand Down