• 🤗 Data • 🤗 ScienceLLaMA-3B • 🤗 ScienceLLaMA-1B • 🐱 Code • 📃 Paper
Logits-Based Finetuning integrates the strengths of supervised learning and knowledge distillation by combining teacher logits with ground truth labels, preserving both correctness and linguistic diversity. This ensures more reliable and effective training.
- Data: huggingface
- Readme: Installation Guide
- Installation:
git clone --depth 1 https://github.com/hiyouga/LLaMA-Factory.git
cd LLaMA-Factory
pip install -e ".[torch,metrics]"- Run
# 1b
llamafactory-cli train llamafactory/scripts/llama3.2_1b_instruct_pkl_1300k_e1_warmup0.1_cosinelr1e-6_seed42_maxl2048_a0.9_t1.0_logp5_freqt_0_b1.0_r1.0.yaml
# 3b
llamafactory-cli train llamafactory/scripts/llama3.2_3b_instruct_pkl_1300k_e1_warmup0.1_cosinelr1e-6_seed42_maxl2048_a0.9_t1.0_logp5_freqt_0_b1.0_r1.0.yaml- Hyperparatemers
| Parameter | Type | Default | Description |
|---|---|---|---|
use_distill |
bool |
False |
Whether to enable distillation. |
distill_alpha |
float |
0.9 |
Balance weight for the distillation loss. |
distill_t |
float |
1.0 |
Temperature for the distillation loss. |
distill_gamma |
float |
1.0 |
Balance weight for teacher model logits. |
- Installation
cd evaluation/latex2sympy
pip install -e .
cd ..
pip install -r requirements.txt
pip install vllm==0.5.1 --no-build-isolation
pip install transformers==4.42.3- Run
bash evaluation/sh/eval.sh "qwen25-math-cot" $MODEL_NAME_OR_PATHIf you find this project useful in your research, please consider citing:
@article{li2025logits,
title={Logits-Based Finetuning},
author={Li, Jingyao and Yang, Senqiao and Wu, Sitong and Shi, Han and Zheng, Chuanyang and Xu, Hong and Jia, Jiaya},
journal={arXiv preprint arXiv:2505.24461},
year={2025}
}

