Skip to content

feat: JumpStartModel attach #4680

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 14 commits into from
Jun 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions src/sagemaker/jumpstart/factory/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -258,6 +258,7 @@ def get_deploy_kwargs(
deserializer: Optional[BaseDeserializer] = None,
accelerator_type: Optional[str] = None,
endpoint_name: Optional[str] = None,
inference_component_name: Optional[str] = None,
tags: Optional[Tags] = None,
kms_key: Optional[str] = None,
wait: Optional[bool] = None,
Expand Down Expand Up @@ -302,6 +303,7 @@ def get_deploy_kwargs(
deserializer=deserializer,
accelerator_type=accelerator_type,
endpoint_name=endpoint_name,
inference_component_name=inference_component_name,
tags=format_tags(tags),
kms_key=kms_key,
wait=wait,
Expand Down
2 changes: 2 additions & 0 deletions src/sagemaker/jumpstart/factory/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -542,6 +542,7 @@ def get_deploy_kwargs(
deserializer: Optional[BaseDeserializer] = None,
accelerator_type: Optional[str] = None,
endpoint_name: Optional[str] = None,
inference_component_name: Optional[str] = None,
tags: Optional[Tags] = None,
kms_key: Optional[str] = None,
wait: Optional[bool] = None,
Expand Down Expand Up @@ -576,6 +577,7 @@ def get_deploy_kwargs(
deserializer=deserializer,
accelerator_type=accelerator_type,
endpoint_name=endpoint_name,
inference_component_name=inference_component_name,
tags=format_tags(tags),
kms_key=kms_key,
wait=wait,
Expand Down
44 changes: 43 additions & 1 deletion src/sagemaker/jumpstart/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,12 +36,13 @@
get_init_kwargs,
get_register_kwargs,
)
from sagemaker.jumpstart.session_utils import get_model_id_version_from_endpoint
from sagemaker.jumpstart.types import JumpStartSerializablePayload
from sagemaker.jumpstart.utils import (
validate_model_id_and_get_type,
verify_model_region_and_return_specs,
)
from sagemaker.jumpstart.constants import JUMPSTART_LOGGER
from sagemaker.jumpstart.constants import DEFAULT_JUMPSTART_SAGEMAKER_SESSION, JUMPSTART_LOGGER
from sagemaker.jumpstart.enums import JumpStartModelType
from sagemaker.model_card import (
ModelCard,
Expand Down Expand Up @@ -406,6 +407,45 @@ def retrieve_example_payload(self) -> JumpStartSerializablePayload:
sagemaker_session=self.sagemaker_session,
)

@classmethod
def attach(
cls,
endpoint_name: str,
inference_component_name: Optional[str] = None,
model_id: Optional[str] = None,
model_version: Optional[str] = None,
sagemaker_session=DEFAULT_JUMPSTART_SAGEMAKER_SESSION,
) -> "JumpStartModel":
"""Attaches a JumpStartModel object to an existing SageMaker Endpoint.

The model id, version (and inference component name) can be inferred from the tags.
"""

inferred_model_id = inferred_model_version = inferred_inference_component_name = None

if inference_component_name is None or model_id is None or model_version is None:
inferred_model_id, inferred_model_version, inferred_inference_component_name = (
get_model_id_version_from_endpoint(
endpoint_name=endpoint_name,
inference_component_name=inference_component_name,
sagemaker_session=sagemaker_session,
)
)

model_id = model_id or inferred_model_id
model_version = model_version or inferred_model_version or "*"
inference_component_name = inference_component_name or inferred_inference_component_name

model = JumpStartModel(
model_id=model_id,
model_version=model_version,
sagemaker_session=sagemaker_session,
)
model.endpoint_name = endpoint_name
model.inference_component_name = inference_component_name

return model

def _create_sagemaker_model(
self,
instance_type=None,
Expand Down Expand Up @@ -484,6 +524,7 @@ def deploy(
deserializer: Optional[BaseDeserializer] = None,
accelerator_type: Optional[str] = None,
endpoint_name: Optional[str] = None,
inference_component_name: Optional[str] = None,
tags: Optional[Tags] = None,
kms_key: Optional[str] = None,
wait: Optional[bool] = True,
Expand Down Expand Up @@ -614,6 +655,7 @@ def deploy(
deserializer=deserializer,
accelerator_type=accelerator_type,
endpoint_name=endpoint_name,
inference_component_name=inference_component_name,
tags=format_tags(tags),
kms_key=kms_key,
wait=wait,
Expand Down
3 changes: 3 additions & 0 deletions src/sagemaker/jumpstart/types.py
Original file line number Diff line number Diff line change
Expand Up @@ -1596,6 +1596,7 @@ class JumpStartModelDeployKwargs(JumpStartKwargs):
"deserializer",
"accelerator_type",
"endpoint_name",
"inference_component_name",
"tags",
"kms_key",
"wait",
Expand Down Expand Up @@ -1641,6 +1642,7 @@ def __init__(
deserializer: Optional[Any] = None,
accelerator_type: Optional[str] = None,
endpoint_name: Optional[str] = None,
inference_component_name: Optional[str] = None,
tags: Optional[Tags] = None,
kms_key: Optional[str] = None,
wait: Optional[bool] = None,
Expand Down Expand Up @@ -1674,6 +1676,7 @@ def __init__(
self.deserializer = deserializer
self.accelerator_type = accelerator_type
self.endpoint_name = endpoint_name
self.inference_component_name = inference_component_name
self.tags = format_tags(tags)
self.kms_key = kms_key
self.wait = wait
Expand Down
22 changes: 19 additions & 3 deletions src/sagemaker/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -358,6 +358,7 @@ def __init__(
sagemaker_config=self._sagemaker_config,
)
self.endpoint_name = None
self.inference_component_name = None
self._is_compiled_model = False
self._compilation_job_name = None
self._is_edge_packaged_model = False
Expand Down Expand Up @@ -405,6 +406,16 @@ def __init__(
self.response_types = None
self.accept_eula = None

@classmethod
def attach(
cls,
endpoint_name: str,
inference_component_name: Optional[str] = None,
sagemaker_session=None,
) -> "Model":
"""Attaches a Model object to an existing SageMaker Endpoint."""
raise NotImplementedError

@runnable_by_pipeline
def register(
self,
Expand Down Expand Up @@ -1318,6 +1329,7 @@ def deploy(
resources: Optional[ResourceRequirements] = None,
endpoint_type: EndpointType = EndpointType.MODEL_BASED,
managed_instance_scaling: Optional[str] = None,
inference_component_name=None,
routing_config: Optional[Dict[str, Any]] = None,
**kwargs,
):
Expand Down Expand Up @@ -1602,11 +1614,15 @@ def deploy(
"ComputeResourceRequirements": resources.get_compute_resource_requirements(),
}
runtime_config = {"CopyCount": resources.copy_count}
inference_component_name = unique_name_from_base(self.name)
self.inference_component_name = (
inference_component_name
or self.inference_component_name
or unique_name_from_base(self.name)
)

# [TODO]: Add endpoint_logging support
self.sagemaker_session.create_inference_component(
inference_component_name=inference_component_name,
inference_component_name=self.inference_component_name,
endpoint_name=self.endpoint_name,
variant_name="AllTraffic", # default variant name
specification=inference_component_spec,
Expand All @@ -1619,7 +1635,7 @@ def deploy(
predictor = self.predictor_cls(
self.endpoint_name,
self.sagemaker_session,
component_name=inference_component_name,
component_name=self.inference_component_name,
)
if serializer:
predictor.serializer = serializer
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -219,6 +219,11 @@ def test_jumpstart_gated_model_inference_component_enabled(setup):

assert response is not None

model = JumpStartModel.attach(predictor.endpoint_name, sagemaker_session=get_sm_session())
assert model.model_id == model_id
assert model.endpoint_name == predictor.endpoint_name
assert model.inference_component_name == predictor.component_name


@mock.patch("sagemaker.jumpstart.cache.JUMPSTART_LOGGER.warning")
def test_instatiating_model(mock_warning_logger, setup):
Expand Down
48 changes: 48 additions & 0 deletions tests/unit/sagemaker/jumpstart/model/test_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -1324,6 +1324,54 @@ def test_model_artifact_variant_model(
enable_network_isolation=True,
)

@mock.patch("sagemaker.jumpstart.model.get_model_id_version_from_endpoint")
@mock.patch("sagemaker.jumpstart.model.JumpStartModel.__init__")
def test_attach(
self,
mock_js_model_init,
mock_get_model_id_version_from_endpoint,
):
mock_js_model_init.return_value = None
mock_get_model_id_version_from_endpoint.return_value = "model-id", "model-version", None
val = JumpStartModel.attach("some-endpoint")
mock_get_model_id_version_from_endpoint.assert_called_once_with(
endpoint_name="some-endpoint",
inference_component_name=None,
sagemaker_session=DEFAULT_JUMPSTART_SAGEMAKER_SESSION,
)
mock_js_model_init.assert_called_once_with(
model_id="model-id",
model_version="model-version",
sagemaker_session=DEFAULT_JUMPSTART_SAGEMAKER_SESSION,
)
assert isinstance(val, JumpStartModel)

mock_get_model_id_version_from_endpoint.reset_mock()
JumpStartModel.attach("some-endpoint", model_id="some-id")
mock_get_model_id_version_from_endpoint.assert_called_once_with(
endpoint_name="some-endpoint",
inference_component_name=None,
sagemaker_session=DEFAULT_JUMPSTART_SAGEMAKER_SESSION,
)

mock_get_model_id_version_from_endpoint.reset_mock()
JumpStartModel.attach("some-endpoint", model_id="some-id", model_version="some-version")
mock_get_model_id_version_from_endpoint.assert_called_once_with(
endpoint_name="some-endpoint",
inference_component_name=None,
sagemaker_session=DEFAULT_JUMPSTART_SAGEMAKER_SESSION,
)

# providing model id, version, and ic name should bypass check with endpoint tags
mock_get_model_id_version_from_endpoint.reset_mock()
JumpStartModel.attach(
"some-endpoint",
model_id="some-id",
model_version="some-version",
inference_component_name="some-ic-name",
)
mock_get_model_id_version_from_endpoint.assert_not_called()

@mock.patch("sagemaker.jumpstart.model.validate_model_id_and_get_type")
@mock.patch(
"sagemaker.jumpstart.factory.model.get_default_jumpstart_session_with_user_agent_suffix"
Expand Down