Closed
Description
Describe the bug
sagemaker.workflow.airflow.training_config
does not return the MetricDefinitions
when it is provided in the estimator. However, tuning_config
does have it.
Related: aws/aws-step-functions-data-science-sdk-python#40
MetricDefinitions in tuning_config
To reproduce
estimator = sagemaker.estimator.Estimator(
PCA_IMAGE,
role=EXECUTION_ROLE,
train_instance_count=1,
train_instance_type='ml.c4.xlarge',
output_path=s3_output_location,
metric_definitions=[{'Name': 'foo', 'Regex': 'bar=(.*?);'}]
)
result = training_config(estimator)
print(result)
Expected behavior
MetricDefinitions
should be included in the result.
Screenshots or logs
N/A
System information
A description of your system. Please provide:
- SageMaker Python SDK version: latest
- Framework name (eg. PyTorch) or algorithm (eg. KMeans): Estimator/TensforFlow
- Framework version:
- Python version:
- CPU or GPU:
- Custom Docker image (Y/N): N
Additional context
N/A