Skip to content

[SPARK-2674] [SQL] [PySpark] support datetime type for SchemaRDD #1601

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 4 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -550,11 +550,11 @@ private[spark] object PythonRDD extends Logging {
def pythonToJavaMap(pyRDD: JavaRDD[Array[Byte]]): JavaRDD[Map[String, _]] = {
pyRDD.rdd.mapPartitions { iter =>
val unpickle = new Unpickler
// TODO: Figure out why flatMap is necessay for pyspark
iter.flatMap { row =>
unpickle.loads(row) match {
// in case of objects are pickled in batch mode
case objs: java.util.ArrayList[JMap[String, _] @unchecked] => objs.map(_.toMap)
// Incase the partition doesn't have a collection
// not in batch mode
case obj: JMap[String @unchecked, _] => Seq(obj.toMap)
}
}
Expand Down
22 changes: 12 additions & 10 deletions python/pyspark/sql.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,12 +47,14 @@ def __init__(self, sparkContext, sqlContext=None):
...
ValueError:...

>>> allTypes = sc.parallelize([{"int" : 1, "string" : "string", "double" : 1.0, "long": 1L,
... "boolean" : True}])
>>> from datetime import datetime
>>> allTypes = sc.parallelize([{"int": 1, "string": "string", "double": 1.0, "long": 1L,
... "boolean": True, "time": datetime(2010, 1, 1, 1, 1, 1), "dict": {"a": 1},
... "list": [1, 2, 3]}])
>>> srdd = sqlCtx.inferSchema(allTypes).map(lambda x: (x.int, x.string, x.double, x.long,
... x.boolean))
... x.boolean, x.time, x.dict["a"], x.list))
>>> srdd.collect()[0]
(1, u'string', 1.0, 1, True)
(1, u'string', 1.0, 1, True, datetime.datetime(2010, 1, 1, 1, 1, 1), 1, [1, 2, 3])
"""
self._sc = sparkContext
self._jsc = self._sc._jsc
Expand Down Expand Up @@ -88,13 +90,13 @@ def inferSchema(self, rdd):

>>> from array import array
>>> srdd = sqlCtx.inferSchema(nestedRdd1)
>>> srdd.collect() == [{"f1" : array('i', [1, 2]), "f2" : {"row1" : 1.0}},
... {"f1" : array('i', [2, 3]), "f2" : {"row2" : 2.0}}]
>>> srdd.collect() == [{"f1" : [1, 2], "f2" : {"row1" : 1.0}},
... {"f1" : [2, 3], "f2" : {"row2" : 2.0}}]
True

>>> srdd = sqlCtx.inferSchema(nestedRdd2)
>>> srdd.collect() == [{"f1" : [[1, 2], [2, 3]], "f2" : set([1, 2]), "f3" : (1, 2)},
... {"f1" : [[2, 3], [3, 4]], "f2" : set([2, 3]), "f3" : (2, 3)}]
>>> srdd.collect() == [{"f1" : [[1, 2], [2, 3]], "f2" : [1, 2]},
... {"f1" : [[2, 3], [3, 4]], "f2" : [2, 3]}]
True
"""
if (rdd.__class__ is SchemaRDD):
Expand Down Expand Up @@ -509,8 +511,8 @@ def _test():
{"f1": array('i', [1, 2]), "f2": {"row1": 1.0}},
{"f1": array('i', [2, 3]), "f2": {"row2": 2.0}}])
globs['nestedRdd2'] = sc.parallelize([
{"f1": [[1, 2], [2, 3]], "f2": set([1, 2]), "f3": (1, 2)},
{"f1": [[2, 3], [3, 4]], "f2": set([2, 3]), "f3": (2, 3)}])
{"f1": [[1, 2], [2, 3]], "f2": [1, 2]},
{"f1": [[2, 3], [3, 4]], "f2": [2, 3]}])
(failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS)
globs['sc'].stop()
if failure_count:
Expand Down
40 changes: 37 additions & 3 deletions sql/core/src/main/scala/org/apache/spark/sql/SQLContext.scala
Original file line number Diff line number Diff line change
Expand Up @@ -352,8 +352,10 @@ class SQLContext(@transient val sparkContext: SparkContext)
case c: java.lang.Long => LongType
case c: java.lang.Double => DoubleType
case c: java.lang.Boolean => BooleanType
case c: java.math.BigDecimal => DecimalType
case c: java.sql.Timestamp => TimestampType
case c: java.util.Calendar => TimestampType
case c: java.util.List[_] => ArrayType(typeFor(c.head))
case c: java.util.Set[_] => ArrayType(typeFor(c.head))
case c: java.util.Map[_, _] =>
val (key, value) = c.head
MapType(typeFor(key), typeFor(value))
Expand All @@ -362,11 +364,43 @@ class SQLContext(@transient val sparkContext: SparkContext)
ArrayType(typeFor(elem))
case c => throw new Exception(s"Object of type $c cannot be used")
}
val schema = rdd.first().map { case (fieldName, obj) =>
val firstRow = rdd.first()
val schema = firstRow.map { case (fieldName, obj) =>
AttributeReference(fieldName, typeFor(obj), true)()
}.toSeq

val rowRdd = rdd.mapPartitions { iter =>
def needTransform(obj: Any): Boolean = obj match {
case c: java.util.List[_] => true
case c: java.util.Map[_, _] => true
case c if c.getClass.isArray => true
case c: java.util.Calendar => true
case c => false
}

// convert JList, JArray into Seq, convert JMap into Map
// convert Calendar into Timestamp
def transform(obj: Any): Any = obj match {
case c: java.util.List[_] => c.map(transform).toSeq
case c: java.util.Map[_, _] => c.map {
case (key, value) => (key, transform(value))
}.toMap
case c if c.getClass.isArray =>
c.asInstanceOf[Array[_]].map(transform).toSeq
case c: java.util.Calendar =>
new java.sql.Timestamp(c.getTime().getTime())
case c => c
}

val need = firstRow.exists {case (key, value) => needTransform(value)}
val transformed = if (need) {
rdd.mapPartitions { iter =>
iter.map {
m => m.map {case (key, value) => (key, transform(value))}
}
}
} else rdd

val rowRdd = transformed.mapPartitions { iter =>
iter.map { map =>
new GenericRow(map.values.toArray.asInstanceOf[Array[Any]]): Row
}
Expand Down
46 changes: 17 additions & 29 deletions sql/core/src/main/scala/org/apache/spark/sql/SchemaRDD.scala
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ import org.apache.spark.sql.catalyst.analysis._
import org.apache.spark.sql.catalyst.expressions._
import org.apache.spark.sql.catalyst.plans.logical._
import org.apache.spark.sql.catalyst.plans.{Inner, JoinType}
import org.apache.spark.sql.catalyst.types.{ArrayType, BooleanType, StructType}
import org.apache.spark.sql.catalyst.types.{DataType, ArrayType, BooleanType, StructType, MapType}
import org.apache.spark.sql.execution.{ExistingRdd, SparkLogicalPlan}
import org.apache.spark.api.java.JavaRDD

Expand Down Expand Up @@ -376,39 +376,27 @@ class SchemaRDD(
* Converts a JavaRDD to a PythonRDD. It is used by pyspark.
*/
private[sql] def javaToPython: JavaRDD[Array[Byte]] = {
def toJava(obj: Any, dataType: DataType): Any = dataType match {
case struct: StructType => rowToMap(obj.asInstanceOf[Row], struct)
case array: ArrayType => obj match {
case seq: Seq[Any] => seq.map(x => toJava(x, array.elementType)).asJava
case list: JList[_] => list.map(x => toJava(x, array.elementType)).asJava
case arr if arr != null && arr.getClass.isArray =>
arr.asInstanceOf[Array[Any]].map(x => toJava(x, array.elementType))
case other => other
}
case mt: MapType => obj.asInstanceOf[Map[_, _]].map {
case (k, v) => (k, toJava(v, mt.valueType)) // key should be primitive type
}.asJava
// Pyrolite can handle Timestamp
case other => obj
}
def rowToMap(row: Row, structType: StructType): JMap[String, Any] = {
val fields = structType.fields.map(field => (field.name, field.dataType))
val map: JMap[String, Any] = new java.util.HashMap
row.zip(fields).foreach {
case (obj, (attrName, dataType)) =>
dataType match {
case struct: StructType => map.put(attrName, rowToMap(obj.asInstanceOf[Row], struct))
case array @ ArrayType(struct: StructType) =>
val arrayValues = obj match {
case seq: Seq[Any] =>
seq.map(element => rowToMap(element.asInstanceOf[Row], struct)).asJava
case list: JList[_] =>
list.map(element => rowToMap(element.asInstanceOf[Row], struct))
case set: JSet[_] =>
set.map(element => rowToMap(element.asInstanceOf[Row], struct))
case arr if arr != null && arr.getClass.isArray =>
arr.asInstanceOf[Array[Any]].map {
element => rowToMap(element.asInstanceOf[Row], struct)
}
case other => other
}
map.put(attrName, arrayValues)
case array: ArrayType => {
val arrayValues = obj match {
case seq: Seq[Any] => seq.asJava
case other => other
}
map.put(attrName, arrayValues)
}
case other => map.put(attrName, obj)
}
case (obj, (attrName, dataType)) => map.put(attrName, toJava(obj, dataType))
}

map
}

Expand Down