Skip to content

Refactor SDEProblem constructor #117

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Sep 22, 2023
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
25 changes: 11 additions & 14 deletions lib/SDEProblemLibrary/src/SDEProblemLibrary.jl
Original file line number Diff line number Diff line change
Expand Up @@ -33,13 +33,12 @@ u(u_0,p,t,W_t)=u_0\exp((α-\frac{β^2}{2})t+βW_t)

"""
prob_sde_linear = SDEProblem(SDEFunction(f_linear, σ_linear,
analytic = linear_analytic), σ_linear, 1 / 2,
analytic = linear_analytic), 1 / 2,
(0.0, 1.0))

linear_analytic_strat(u0, p, t, W) = @.(u0*exp(1.01t + 0.87W))
prob_sde_linear_stratonovich = SDEProblem(SDEFunction(f_linear, σ_linear,
analytic = linear_analytic_strat),
σ_linear, 1 / 2, (0.0, 1.0))
analytic = linear_analytic_strat), 1 / 2, (0.0, 1.0))
f_linear_iip(du, u, p, t) = @.(du=1.01 * u)
σ_linear_iip(du, u, p, t) = @.(du=0.87 * u)
@doc doc"""
Expand All @@ -55,11 +54,9 @@ u(u_0,p,t,W_t)=u_0\exp((α-\frac{β^2}{2})t+βW_t)
```
"""
prob_sde_2Dlinear = SDEProblem(SDEFunction(f_linear_iip, σ_linear_iip,
analytic = linear_analytic),
σ_linear_iip, ones(4, 2) / 2, (0.0, 1.0))
analytic = linear_analytic), ones(4, 2) / 2, (0.0, 1.0))
prob_sde_2Dlinear_stratonovich = SDEProblem(SDEFunction(f_linear_iip, σ_linear_iip,
analytic = linear_analytic_strat),
σ_linear_iip, ones(4, 2) / 2, (0.0, 1.0))
analytic = linear_analytic_strat), ones(4, 2) / 2, (0.0, 1.0))

f_cubic(u, p, t) = -0.25 * u * (1 - u^2)
σ_cubic(u, p, t) = 0.5 * (1 - u^2)
Expand All @@ -76,7 +73,7 @@ and initial condition ``u_0=\frac{1}{2}``, with solution
u(u0,p,t,W_t)=\frac{(1+u_0)\exp(W_t)+u)0-1}{(1+u_0)\exp(W_t)+1-u_0}
```
"""
prob_sde_cubic = SDEProblem(ff_cubic, σ_cubic, 1 / 2, (0.0, 1.0))
prob_sde_cubic = SDEProblem(ff_cubic, 1 / 2, (0.0, 1.0))

f_wave(u, p, t) = @. -0.01 * sin(u) * cos(u)^3
σ_wave(u, p, t) = @. 0.1 * cos(u)^2
Expand All @@ -93,7 +90,7 @@ and initial condition ``u_0=1`` with solution
u(u_0,p,t,W_t)=\arctan(\frac{W_t}{10} + \tan(u_0))
```
"""
prob_sde_wave = SDEProblem(ff_wave, σ_wave, 1.0, (0.0, 1.0))
prob_sde_wave = SDEProblem(ff_wave, 1.0, (0.0, 1.0))

f_additive(u, p, t) = @. p[2] / sqrt(1 + t) - u / (2 * (1 + t))
σ_additive(u, p, t) = @. p[1] * p[2] / sqrt(1 + t)
Expand All @@ -113,7 +110,7 @@ and initial condition ``u_0=1`` with ``α=0.1`` and ``β=0.05``, with solution
u(u_0,p,t,W_t)=\frac{u_0}{\sqrt{1+t}} + \frac{β(t+αW_t)}{\sqrt{1+t}}
```
"""
prob_sde_additive = SDEProblem(ff_additive, σ_additive, 1.0, (0.0, 1.0), p)
prob_sde_additive = SDEProblem(ff_additive, 1.0, (0.0, 1.0), p)

f_additive_iip(du, u, p, t) = @.(du=p[2] / sqrt(1 + t) - u / (2 * (1 + t)))
σ_additive_iip(du, u, p, t) = @.(du=p[1] * p[2] / sqrt(1 + t))
Expand All @@ -123,7 +120,7 @@ p = ([0.1; 0.1; 0.1; 0.1], [0.5; 0.25; 0.125; 0.1115])
A multiple dimension extension of `additiveSDEExample`

"""
prob_sde_additivesystem = SDEProblem(ff_additive_iip, σ_additive_iip, [1.0; 1.0; 1.0; 1.0],
prob_sde_additivesystem = SDEProblem(ff_additive_iip, [1.0; 1.0; 1.0; 1.0],
(0.0, 1.0), p)

function f_lorenz(du, u, p, t)
Expand Down Expand Up @@ -157,7 +154,7 @@ ff_nltest = SDEFunction(f_nltest, σ_nltest, analytic = analytic_nltest)
Runge–Kutta methods for numerical solution of stochastic differential equations
Tocino and Ardanuy
"""
prob_sde_nltest = SDEProblem(ff_nltest, σ_nltest, 1.0, (0.0, 10.0))
prob_sde_nltest = SDEProblem(ff_nltest, 1.0, (0.0, 10.0))

@doc doc"""
oval2ModelExample(;largeFluctuations=false,useBigs=false,noiseLevel=1)
Expand Down Expand Up @@ -404,7 +401,7 @@ Stiffness of Euler is determined by α+β²<1
Higher α or β is stiff, with α being deterministic stiffness and
β being noise stiffness (and grows by square).
"""
prob_sde_stiffquadito = SDEProblem(ff_stiff_quad_ito, stiff_quad_g, 0.5, (0.0, 3.0),
prob_sde_stiffquadito = SDEProblem(ff_stiff_quad_ito, 0.5, (0.0, 3.0),
(1.0, 1.0))

@doc doc"""
Expand All @@ -424,7 +421,7 @@ Stiffness of Euler is determined by α+β²<1
Higher α or β is stiff, with α being deterministic stiffness and
β being noise stiffness (and grows by square).
"""
prob_sde_stiffquadstrat = SDEProblem(ff_stiff_quad_strat, stiff_quad_g, 0.5, (0.0, 3.0),
prob_sde_stiffquadstrat = SDEProblem(ff_stiff_quad_strat, 0.5, (0.0, 3.0),
(1.0, 1.0))

@doc doc"""
Expand Down