Skip to content

【Hackathon 8th No.18】FengWu 论文复现 #1082

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Mar 10, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 65 additions & 0 deletions rfcs/Science/20250305_fengwu.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
# FengWu 设计文档

> RFC 文档相关记录信息

| | |
| ------------ | ------------------ |
| 提交作者 | BeingGod |
| 提交时间 | 2025-03-05 |
| RFC 版本号 | v1.0 |
| 依赖飞桨版本 | 3.0rc1 版本 |
| 文件名 | 20250305_fengwu |

## 1. 概述

### 1.1 相关背景

[NO.18 FengWu 论文复现](https://github.com/PaddlePaddle/community/blob/master/hackathon/hackathon_8th/【Hackathon_8th】个人挑战赛—套件开发任务合集.md#no18-fengwu-论文复现)

随着近年来全球气候变化加剧,极端天气频发,各界对天气预报的时效和精度的期待更是与日俱增。如何提高天气预报的时效和准确度,一直是业内的重点课题。AI大模型“风乌”基于多模态和多任务深度学习方法构建,实现在高分辨率上对核心大气变量进行超过10天的有效预报,并在80%的评估指标上超越DeepMind发布的模型GraphCast。同时,“风乌”仅需30秒即可生成未来10天全球高精度预报结果,在效率上大幅优于传统模型。

### 1.2 功能目标

1. 复现 FengWu 代码,实现完整的推理流程。
2. 保持精度与作者原代码一致,相对误差在 ±10% 以内。
3. 产出论文相关文档、图片等。

### 1.3 意义

复现 FengWu 代码,能够使用 FengWu 模型进行推理。

## 2. PaddleScience 现状

PaddleScience 套件暂无 FengWu 代码案例。

## 3. 目标调研

- 论文解决的问题:
FengWu 模型解决了以往天气预报效率低的问题
- 链接:
1. 代码:[https://github.com/OpenEarthLab/FengWu](https://github.com/OpenEarthLab/FengWu)
2. 论文:[https://arxiv.org/abs/2304.02948](https://arxiv.org/abs/2304.02948)

## 4. 设计思路与实现方案

参考 PaddleScience 已有代码实现 FengWu

1. 基于 Predictor 类实现推理代码
2. 实现推理结果可视化

### 4.1 补充说明[可选]


## 5. 测试和验收的考量

推理结果可正常可视化;精度与作者原始代码对齐。

## 6. 可行性分析和排期规划

- 2025.3上旬:调研,复现代码并作调整
- 2025.3中旬:整理项目产出,撰写案例文档

## 7. 影响面

丰富 PaddleScience 的应用案例,在 examples 新增 FengWu 推理案例