Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 30 additions & 10 deletions tensorrt_llm/_torch/modules/linear.py
Original file line number Diff line number Diff line change
Expand Up @@ -604,9 +604,12 @@ def load_weights_vanilla(self, module: Linear, weights: List[Dict]) -> None:
load_weights_vanilla_helper(module, weights)

scale_name = self._get_scale_name(weights)
weight_scale = load_weight_shard(weights[0][scale_name], module.tp_size,
module.tp_rank,
module.tp_mode).squeeze()
full_weight_scale = weights[0][scale_name]
# modelopt fp8_pb_wo can have 2 extra singleton dimensions
if full_weight_scale.dim() == 4:
full_weight_scale = full_weight_scale.squeeze(1).squeeze(-1)
weight_scale = load_weight_shard(full_weight_scale, module.tp_size,
module.tp_rank, module.tp_mode)
copy_weight(module.weight_scale, weight_scale)
if "input_scale" in weights[0]:
copy_weight(module.input_scale, weights[0]["input_scale"])
Expand All @@ -619,13 +622,23 @@ def load_weights_fused_qkv_linear(self, module: Linear,
fused_weight = torch.cat((q_weight, k_weight, v_weight))

scale_name = self._get_scale_name(weights)
q_scale = load_weight_shard(weights[0][scale_name], module.tp_size,
full_q_scale = weights[0][scale_name]
full_k_scale = weights[1][scale_name]
full_v_scale = weights[2][scale_name]
# modelopt fp8_pb_wo can have 2 extra singleton dimensions
if full_q_scale.dim() == 4:
full_q_scale = full_q_scale.squeeze(1).squeeze(-1)
if full_k_scale.dim() == 4:
full_k_scale = full_k_scale.squeeze(1).squeeze(-1)
if full_v_scale.dim() == 4:
full_v_scale = full_v_scale.squeeze(1).squeeze(-1)
q_scale = load_weight_shard(full_q_scale, module.tp_size,
module.tp_rank, module.tp_mode)
k_scale = load_weight_shard(weights[1][scale_name], module.tp_size,
k_scale = load_weight_shard(full_k_scale, module.tp_size,
module.tp_rank, module.tp_mode)
v_scale = load_weight_shard(weights[2][scale_name], module.tp_size,
v_scale = load_weight_shard(full_v_scale, module.tp_size,
module.tp_rank, module.tp_mode)
fused_fp8_block_scale = torch.cat((q_scale, k_scale, v_scale)).squeeze()
fused_fp8_block_scale = torch.cat((q_scale, k_scale, v_scale))

copy_weight(module.weight, fused_weight)
copy_weight(module.weight_scale, fused_fp8_block_scale)
Expand All @@ -637,11 +650,18 @@ def load_weights_fused_gate_up_linear(self, module: Linear,
fused_weight = torch.cat((gate_weight, up_weight))

scale_name = self._get_scale_name(weights)
left_scale = load_weight_shard(weights[0][scale_name], module.tp_size,
full_left_scale = weights[0][scale_name]
full_right_scale = weights[1][scale_name]
# modelopt fp8_pb_wo can have 2 extra singleton dimensions
if full_left_scale.dim() == 4:
full_left_scale = full_left_scale.squeeze(1).squeeze(-1)
if full_right_scale.dim() == 4:
full_right_scale = full_right_scale.squeeze(1).squeeze(-1)
left_scale = load_weight_shard(full_left_scale, module.tp_size,
module.tp_rank, module.tp_mode)
right_scale = load_weight_shard(weights[1][scale_name], module.tp_size,
right_scale = load_weight_shard(full_right_scale, module.tp_size,
module.tp_rank, module.tp_mode)
fused_scale = torch.cat([left_scale, right_scale], dim=0).squeeze()
fused_scale = torch.cat([left_scale, right_scale], dim=0)
copy_weight(module.weight, fused_weight)
copy_weight(module.weight_scale, fused_scale)

Expand Down