Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 7 additions & 7 deletions include/matx/transforms/fft.h
Original file line number Diff line number Diff line change
Expand Up @@ -235,23 +235,23 @@ template <typename OutTensorType, typename InTensorType> class matxFFTPlan_t {
else if (fft_rank == 2) {
if (params.transform_type == CUFFT_C2R ||
params.transform_type == CUFFT_Z2D) {
params.n[0] = o.Size(RANK-1);
params.n[1] = o.Size(RANK-2);
params.n[1] = o.Size(RANK-1);
params.n[0] = o.Size(RANK-2);
}
else {
params.n[1] = i.Size(RANK-1);
params.n[0] = i.Size(RANK-2);
}

params.batch = (RANK == 2) ? 1 : i.Size(RANK - 3);
params.inembed[1] = o.Size(RANK-1);
params.onembed[1] = i.Size(RANK-1);
params.inembed[1] = i.Size(RANK-1);
params.onembed[1] = o.Size(RANK-1);
params.istride = i.Stride(RANK-1);
params.ostride = o.Stride(RANK-1);
params.idist = (RANK<=2) ? 1 : (int) i.Stride(RANK-3);
params.odist = (RANK<=2) ? 1 : (int) o.Stride(RANK-3);

if constexpr (is_complex_half_v<T1> || is_complex_half_v<T1>) {
if constexpr (is_complex_half_v<T1> || is_half_v<T1>) {
if ((params.n[0] & (params.n[0] - 1)) != 0 ||
(params.n[1] & (params.n[1] - 1)) != 0) {
MATX_THROW(matxInvalidDim,
Expand Down Expand Up @@ -367,7 +367,7 @@ template <typename OutTensorType, typename InTensorType> class matxFFTPlan_t {
if constexpr (is_complex_half_v<T2>) {
return CUFFT_C2C;
}
else if constexpr (is_half_v<T1>) {
else if constexpr (is_half_v<T2>) {
return CUFFT_R2C;
}
}
Expand Down Expand Up @@ -1057,7 +1057,7 @@ __MATX_INLINE__ void ifft2_impl(OutputTensor o, const InputTensor i,
}

// Get parameters required by these tensors
auto params = detail::matxFFTPlan_t<decltype(in), decltype(out)>::GetFFTParams(out, in, 2);
auto params = detail::matxFFTPlan_t<decltype(out), decltype(in)>::GetFFTParams(out, in, 2);
params.stream = stream;

// Get cache or new FFT plan if it doesn't exist
Expand Down
152 changes: 152 additions & 0 deletions test/00_transform/FFT.cu
Original file line number Diff line number Diff line change
Expand Up @@ -640,6 +640,65 @@ TYPED_TEST(FFTTestComplexTypes, FFT2D16C2C)
MATX_EXIT_HANDLER();
}

TYPED_TEST(FFTTestComplexTypes, FFT2D16x32C2C)
{
MATX_ENTER_HANDLER();
const index_t fft_dim[] = {16, 32};
this->pb->template InitAndRunTVGenerator<TypeParam>(
"00_transforms", "fft_operators", "fft_2d", {fft_dim[0], fft_dim[1]});

tensor_t<TypeParam, 2> av{{fft_dim[0], fft_dim[1]}};
tensor_t<TypeParam, 2> avo{{fft_dim[0], fft_dim[1]}};
this->pb->NumpyToTensorView(av, "a_in");

(avo = fft2(av)).run();
cudaStreamSynchronize(0);

MATX_TEST_ASSERT_COMPARE(this->pb, avo, "a_out", this->thresh);
MATX_EXIT_HANDLER();
}

TYPED_TEST(FFTTestComplexTypes, FFT2D16BatchedC2C)
{
MATX_ENTER_HANDLER();
const index_t batch_size = 10;
const index_t fft_dim = 16;
this->pb->template InitAndRunTVGenerator<TypeParam>(
"00_transforms", "fft_operators", "fft_2d_batched",
{batch_size, fft_dim, fft_dim});

tensor_t<TypeParam, 3> av{{batch_size, fft_dim, fft_dim}};
tensor_t<TypeParam, 3> avo{{batch_size, fft_dim, fft_dim}};
this->pb->NumpyToTensorView(av, "a_in");

(avo = fft2(av)).run();
cudaStreamSynchronize(0);

MATX_TEST_ASSERT_COMPARE(this->pb, avo, "a_out", this->thresh);
MATX_EXIT_HANDLER();
}

TYPED_TEST(FFTTestComplexTypes, FFT2D16BatchedStridedC2C)
{
MATX_ENTER_HANDLER();
const index_t batch_size = 10;
const index_t fft_dim = 16;
this->pb->template InitAndRunTVGenerator<TypeParam>(
"00_transforms", "fft_operators", "fft_2d_batched_strided",
{fft_dim, batch_size, fft_dim});

tensor_t<TypeParam, 3> av{{fft_dim, batch_size, fft_dim}};
tensor_t<TypeParam, 3> avo{{fft_dim, batch_size, fft_dim}};
this->pb->NumpyToTensorView(av, "a_in");

const int32_t axes[] = {0, 2};
(avo = fft2(av, axes)).run();
cudaStreamSynchronize(0);

MATX_TEST_ASSERT_COMPARE(this->pb, avo, "a_out", this->thresh);
MATX_EXIT_HANDLER();
}

TYPED_TEST(FFTTestComplexTypes, IFFT2D16C2C)
{
MATX_ENTER_HANDLER();
Expand All @@ -658,6 +717,99 @@ TYPED_TEST(FFTTestComplexTypes, IFFT2D16C2C)
MATX_EXIT_HANDLER();
}

TYPED_TEST(FFTTestComplexTypes, IFFT2D16x32C2C)
{
MATX_ENTER_HANDLER();
const index_t fft_dim[] = {16, 32};
this->pb->template InitAndRunTVGenerator<TypeParam>(
"00_transforms", "fft_operators", "ifft_2d", {fft_dim[0], fft_dim[1]});

tensor_t<TypeParam, 2> av{{fft_dim[0], fft_dim[1]}};
tensor_t<TypeParam, 2> avo{{fft_dim[0], fft_dim[1]}};
this->pb->NumpyToTensorView(av, "a_in");

(avo = ifft2(av)).run();
cudaStreamSynchronize(0);

MATX_TEST_ASSERT_COMPARE(this->pb, avo, "a_out", this->thresh);
MATX_EXIT_HANDLER();
}

TYPED_TEST(FFTTestComplexNonHalfTypes, FFT2D16R2C)
{
MATX_ENTER_HANDLER();
const index_t fft_dim = 16;
using rtype = typename TypeParam::value_type;
this->pb->template InitAndRunTVGenerator<rtype>(
"00_transforms", "fft_operators", "rfft_2d", {fft_dim, fft_dim});

tensor_t<rtype, 2> av{{fft_dim, fft_dim}};
tensor_t<TypeParam, 2> avo{{fft_dim, fft_dim / 2 + 1}};
this->pb->NumpyToTensorView(av, "a_in");

(avo = fft2(av)).run();
cudaStreamSynchronize(0);

MATX_TEST_ASSERT_COMPARE(this->pb, avo, "a_out", this->thresh);
MATX_EXIT_HANDLER();
}

TYPED_TEST(FFTTestComplexNonHalfTypes, FFT2D16x32R2C)
{
MATX_ENTER_HANDLER();
const index_t fft_dim[] = {16, 32};
using rtype = typename TypeParam::value_type;
this->pb->template InitAndRunTVGenerator<rtype>(
"00_transforms", "fft_operators", "rfft_2d", {fft_dim[0], fft_dim[1]});

tensor_t<rtype, 2> av{{fft_dim[0], fft_dim[1]}};
tensor_t<TypeParam, 2> avo{{fft_dim[0], fft_dim[1] / 2 + 1}};
this->pb->NumpyToTensorView(av, "a_in");

(avo = fft2(av)).run();
cudaStreamSynchronize(0);

MATX_TEST_ASSERT_COMPARE(this->pb, avo, "a_out", this->thresh);
MATX_EXIT_HANDLER();
}

TYPED_TEST(FFTTestComplexNonHalfTypes, IFFT2D16C2R)
{
MATX_ENTER_HANDLER();
const index_t fft_dim = 16;
using rtype = typename TypeParam::value_type;
this->pb->template InitAndRunTVGenerator<TypeParam>(
"00_transforms", "fft_operators", "irfft_2d", {fft_dim, fft_dim});

tensor_t<TypeParam, 2> av{{fft_dim, fft_dim / 2 + 1}};
tensor_t<rtype, 2> avo{{fft_dim, fft_dim}};
this->pb->NumpyToTensorView(av, "a_in");

(avo = ifft2(av)).run();
cudaStreamSynchronize(0);

MATX_TEST_ASSERT_COMPARE(this->pb, avo, "a_out", this->thresh);
MATX_EXIT_HANDLER();
}

TYPED_TEST(FFTTestComplexNonHalfTypes, IFFT2D16x32C2R)
{
MATX_ENTER_HANDLER();
const index_t fft_dim[] = {16, 32};
using rtype = typename TypeParam::value_type;
this->pb->template InitAndRunTVGenerator<TypeParam>(
"00_transforms", "fft_operators", "irfft_2d", {fft_dim[0], fft_dim[1]});

tensor_t<TypeParam, 2> av{{fft_dim[0], fft_dim[1] / 2 + 1}};
tensor_t<rtype, 2> avo{{fft_dim[0], fft_dim[1]}};
this->pb->NumpyToTensorView(av, "a_in");

(avo = ifft2(av)).run();
cudaStreamSynchronize(0);

MATX_TEST_ASSERT_COMPARE(this->pb, avo, "a_out", this->thresh);
MATX_EXIT_HANDLER();
}

TYPED_TEST(FFTTestComplexNonHalfTypes, FFT1D1024C2CShort)
{
Expand Down
36 changes: 34 additions & 2 deletions test/test_vectors/generators/00_transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -319,15 +319,47 @@ def fft_2d(self) -> Dict[str, np.ndarray]:
(self.size[0], self.size[1]), self.dtype)
return {
'a_in': seq,
'a_out': np.fft.fft2(seq, (self.size[1], self.size[1]))
'a_out': np.fft.fft2(seq, (self.size[0], self.size[1]))
}

def fft_2d_batched(self) -> Dict[str, np.ndarray]:
seq = matx_common.randn_ndarray(
(self.size[0], self.size[1], self.size[2]), self.dtype)
return {
'a_in': seq,
'a_out': np.fft.fft2(seq, (self.size[1], self.size[2]))
}

def fft_2d_batched_strided(self) -> Dict[str, np.ndarray]:
seq = matx_common.randn_ndarray(
(self.size[0], self.size[1], self.size[2]), self.dtype)
return {
'a_in': seq,
'a_out': np.fft.fft2(seq, (self.size[0], self.size[2]), axes=(0, 2))
}

def ifft_2d(self) -> Dict[str, np.ndarray]:
seq = matx_common.randn_ndarray(
(self.size[0], self.size[1]), self.dtype)
return {
'a_in': seq,
'a_out': np.fft.ifft2(seq, (self.size[1], self.size[1]))
'a_out': np.fft.ifft2(seq, (self.size[0], self.size[1]))
}

def rfft_2d(self) -> Dict[str, np.ndarray]:
seq = matx_common.randn_ndarray(
(self.size[0], self.size[1]), self.dtype)
return {
'a_in': seq,
'a_out': np.fft.rfft2(seq, (self.size[0], self.size[1]))
}

def irfft_2d(self) -> Dict[str, np.ndarray]:
seq = matx_common.randn_ndarray(
(self.size[0], self.size[1]), self.dtype)
return {
'a_in': seq,
'a_out': np.fft.irfft2(seq, (self.size[0], self.size[1]))
}


Expand Down