Closed
Description
This works on Julia v1.1 but crashes on 20834c3. Will try bisect.
using Atoms
using SCF
using AtomicLevels
using AtomicPotentials
using FEDVRQuasi
rₘₐₓ, ρ = 10, 0.1
fedvr_order = 10
N = max(ceil(Int, rₘₐₓ/(ρ*fedvr_order)),2)
t = range(0.0, stop=rₘₐₓ, length=N)
R = FEDVR(t, fedvr_order)[:,2:end-1]
nucleus = pc"He"
atom = Atom(R, [spin_configurations(ground_state(nucleus))[1]],
nucleus, eltype(R))
fock = Fock(atom)
Expected output:
Fock operator with
- quantum system: Atom{Float64}(R=FEDVR{Float64} basis with 9 elements on 0.0..10.0, restricted to basis functions 2..81 ⊂ 1..82; Z = 2 [helium]; 2 e⁻ ⇒ Q = 0) with 1 Configuration{SpinOrbital}: 1s²
- SCF equations:
- Hartree–Fock equation: E|1s₀α⟩ = OrbitalEquation(1s₀α):
[1, 1] = + 1ĥ₀|1s₀α⟩ + 1r⁻¹×Y⁰(1s₀β,1s₀β)|1s₀α⟩
⟨1s₀α| 𝓗 |1s₀α⟩ = -0.7500000012522258 Ha = -20.408250034074314 eV
- Hartree–Fock equation: E|1s₀β⟩ = OrbitalEquation(1s₀β):
[1, 1] = + 1ĥ₀|1s₀β⟩ + 1r⁻¹×Y⁰(1s₀α,1s₀α)|1s₀β⟩
⟨1s₀β| 𝓗 |1s₀β⟩ = -0.7500000012522258 Ha = -20.408250034074314 eV
Actual output.txt
Environment:
Project.toml.txt
Manifest.toml.txt