Skip to content

Pytorch implementation of paper "Progressive Growing of GANs for Improved Quality, Stability, and Variation".

License

Notifications You must be signed in to change notification settings

Jermmy/progressive-gan-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This is a Pytorch implementation of Progressive GAN.

Borrow code from PyTorch-progressive_growing_of_gans.

Requirements

  • Test on Mac, Linux and Windows 7.
  • Python 3 (>=3.5).
  • PyTorch 1.0, python-opencv3.

Dataset

Download the original CelebA dataset from here and additional deltas files from here. Unzip them, then you can generate CelebA-HQ dataset using dataset_tools.py:

python dataset_tools.py create_celeba_hq Celeba-HQ ~/celeba ~/celeba-hq-deltas

The CelebA-HQ dataset will be placed in folder Celeba-HQ.

To ease image reading, I generate a file list for all training images:

python dataset_tools.py generate_filelist Celeba-HQ/ data/

The file list will be generated in folder data.

Training

celeba_hq_dir=Celeba-HQ
g_lr=1e-3
d_lr=1e-3
resolution=4
epochs=40
gan_type=lsgan
norm=pixelnorm
output_act=tanh
start_idx=0  # start epoch
l_gp=1.
device_id=0  # GPU id
batch_size=16

phase=stabilize
# phase=fadein

ckpt_path=ckpt/reso-${resolution}x${resolution}/${phase}_${gan_type}_${norm}_${output_act}
result_path=result/reso-${resolution}x${resolution}/${phase}_${gan_type}_${norm}_${output_act}

python train.py --celeba_hq_dir ${celeba_hq_dir} \
                --g_lr ${g_lr} \
                --d_lr ${d_lr} \
                --batch_size ${batch_size} \
                --epochs ${epochs} \
                --gan_type ${gan_type} \
                --l_gp ${l_gp} \
                --device_id ${device_id} \
                --resolution ${resolution} \
                --norm ${norm} \
                --output_act ${output_act} \
                --start_idx ${start_idx} \
                --phase ${phase} \
                --ckpt_path ${ckpt_path} \
                --result_path ${result_path} 

Result

Currently, I have only run out some results using LsGAN. For WGAN-GP, the results are very bad and I still don't know why.

About

Pytorch implementation of paper "Progressive Growing of GANs for Improved Quality, Stability, and Variation".

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •