Skip to content
Merged
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 25 additions & 7 deletions dpnp/dpnp_iface_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -1490,7 +1490,7 @@ def take(a, indices, /, *, axis=None, out=None, mode="wrap"):
return dpnp.get_result_array(result, out)


def take_along_axis(a, indices, axis):
def take_along_axis(a, indices, axis, mode="wrap"):
"""
Take values from the input array by matching 1d index and data slices.

Expand All @@ -1511,15 +1511,24 @@ def take_along_axis(a, indices, axis):
Indices to take along each 1d slice of `a`. This must match the
dimension of the input array, but dimensions ``Ni`` and ``Nj``
only need to broadcast against `a`.
axis : int
axis : {None, int}
The axis to take 1d slices along. If axis is ``None``, the input
array is treated as if it had first been flattened to 1d,
for consistency with :obj:`dpnp.sort` and :obj:`dpnp.argsort`.
mode : {"wrap", "clip"}, optional
Specifies how out-of-bounds indices will be handled. Possible values
are:

- ``"wrap"``: clamps indices to (``-n <= i < n``), then wraps
negative indices.
- ``"clip"``: clips indices to (``0 <= i < n``).

Default: ``"wrap"``.

Returns
-------
out : dpnp.ndarray
The indexed result.
The indexed result of the same data type as `a`.

See Also
--------
Expand Down Expand Up @@ -1579,12 +1588,21 @@ def take_along_axis(a, indices, axis):

"""

dpnp.check_supported_arrays_type(a, indices)

if axis is None:
a = a.ravel()
dpnp.check_supported_arrays_type(indices)
if indices.ndim != 1:
raise ValueError(
"when axis=None, `indices` must have a single dimension."
)

return a[_build_along_axis_index(a, indices, axis)]
a = dpnp.ravel(a)
axis = 0

usm_a = dpnp.get_usm_ndarray(a)
usm_ind = dpnp.get_usm_ndarray(indices)

usm_res = dpt.take_along_axis(usm_a, usm_ind, axis=axis, mode=mode)
return dpnp_array._create_from_usm_ndarray(usm_res)


def tril_indices(
Expand Down
99 changes: 60 additions & 39 deletions tests/test_indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -544,6 +544,13 @@ def test_values(self, arr_dt, idx_dt, ndim, values):
dpnp.put_along_axis(dp_a, dp_ai, values, axis)
assert_array_equal(np_a, dp_a)

@pytest.mark.parametrize("xp", [numpy, dpnp])
@pytest.mark.parametrize("dt", [bool, numpy.float32])
def test_invalid_indices_dtype(self, xp, dt):
a = xp.ones((10, 10))
ind = xp.ones(10, dtype=dt)
assert_raises(IndexError, xp.put_along_axis, a, ind, 7, axis=1)

@pytest.mark.parametrize("arr_dt", get_all_dtypes())
@pytest.mark.parametrize("idx_dt", get_integer_dtypes())
def test_broadcast(self, arr_dt, idx_dt):
Expand Down Expand Up @@ -673,66 +680,80 @@ def test_argequivalent(self, func, argfunc, kwargs):
@pytest.mark.parametrize("idx_dt", get_integer_dtypes())
@pytest.mark.parametrize("ndim", list(range(1, 4)))
def test_multi_dimensions(self, arr_dt, idx_dt, ndim):
np_a = numpy.arange(4**ndim, dtype=arr_dt).reshape((4,) * ndim)
np_ai = numpy.array([3, 0, 2, 1], dtype=idx_dt).reshape(
a = numpy.arange(4**ndim, dtype=arr_dt).reshape((4,) * ndim)
ind = numpy.array([3, 0, 2, 1], dtype=idx_dt).reshape(
(1,) * (ndim - 1) + (4,)
)

dp_a = dpnp.array(np_a, dtype=arr_dt)
dp_ai = dpnp.array(np_ai, dtype=idx_dt)
ia, iind = dpnp.array(a), dpnp.array(ind)

for axis in range(ndim):
expected = numpy.take_along_axis(np_a, np_ai, axis)
result = dpnp.take_along_axis(dp_a, dp_ai, axis)
result = dpnp.take_along_axis(ia, iind, axis)
expected = numpy.take_along_axis(a, ind, axis)
assert_array_equal(expected, result)

@pytest.mark.parametrize("xp", [numpy, dpnp])
def test_invalid(self, xp):
def test_not_enough_indices(self, xp):
a = xp.ones((10, 10))
ai = xp.ones((10, 2), dtype=xp.intp)

# not enough indices
assert_raises(ValueError, xp.take_along_axis, a, xp.array(1), axis=1)

# bool arrays not allowed
assert_raises(
IndexError, xp.take_along_axis, a, ai.astype(bool), axis=1
)
@pytest.mark.parametrize("xp", [numpy, dpnp])
@pytest.mark.parametrize("dt", [bool, numpy.float32])
def test_invalid_indices_dtype(self, xp, dt):
a = xp.ones((10, 10))
ind = xp.ones((10, 2), dtype=dt)
assert_raises(IndexError, xp.take_along_axis, a, ind, axis=1)

# float arrays not allowed
assert_raises(
IndexError, xp.take_along_axis, a, ai.astype(numpy.float32), axis=1
)
@pytest.mark.parametrize("xp", [numpy, dpnp])
def test_invalid_axis(self, xp):
a = xp.ones((10, 10))
ind = xp.ones((10, 2), dtype=xp.intp)
assert_raises(AxisError, xp.take_along_axis, a, ind, axis=10)

# invalid axis
assert_raises(AxisError, xp.take_along_axis, a, ai, axis=10)
@pytest.mark.parametrize("xp", [numpy, dpnp])
def test_indices_ndim_axis_none(self, xp):
a = xp.ones((10, 10))
ind = xp.ones((10, 2), dtype=xp.intp)
assert_raises(ValueError, xp.take_along_axis, a, ind, axis=None)

@pytest.mark.parametrize("arr_dt", get_all_dtypes())
@pytest.mark.parametrize("a_dt", get_all_dtypes(no_none=True))
@pytest.mark.parametrize("idx_dt", get_integer_dtypes())
def test_empty(self, arr_dt, idx_dt):
np_a = numpy.ones((3, 4, 5), dtype=arr_dt)
np_ai = numpy.ones((3, 0, 5), dtype=idx_dt)

dp_a = dpnp.array(np_a, dtype=arr_dt)
dp_ai = dpnp.array(np_ai, dtype=idx_dt)
def test_empty(self, a_dt, idx_dt):
a = numpy.ones((3, 4, 5), dtype=a_dt)
ind = numpy.ones((3, 0, 5), dtype=idx_dt)
ia, iind = dpnp.array(a), dpnp.array(ind)

expected = numpy.take_along_axis(np_a, np_ai, axis=1)
result = dpnp.take_along_axis(dp_a, dp_ai, axis=1)
result = dpnp.take_along_axis(ia, iind, axis=1)
expected = numpy.take_along_axis(a, ind, axis=1)
assert_array_equal(expected, result)

@pytest.mark.parametrize("arr_dt", get_all_dtypes())
@pytest.mark.parametrize("a_dt", get_all_dtypes(no_none=True))
@pytest.mark.parametrize("idx_dt", get_integer_dtypes())
def test_broadcast(self, arr_dt, idx_dt):
np_a = numpy.ones((3, 4, 1), dtype=arr_dt)
np_ai = numpy.ones((1, 2, 5), dtype=idx_dt)

dp_a = dpnp.array(np_a, dtype=arr_dt)
dp_ai = dpnp.array(np_ai, dtype=idx_dt)
def test_broadcast(self, a_dt, idx_dt):
a = numpy.ones((3, 4, 1), dtype=a_dt)
ind = numpy.ones((1, 2, 5), dtype=idx_dt)
ia, iind = dpnp.array(a), dpnp.array(ind)

expected = numpy.take_along_axis(np_a, np_ai, axis=1)
result = dpnp.take_along_axis(dp_a, dp_ai, axis=1)
result = dpnp.take_along_axis(ia, iind, axis=1)
expected = numpy.take_along_axis(a, ind, axis=1)
assert_array_equal(expected, result)

def test_mode_wrap(self):
a = numpy.array([-2, -1, 0, 1, 2])
ind = numpy.array([-2, 2, -5, 4])
ia, iind = dpnp.array(a), dpnp.array(ind)

result = dpnp.take_along_axis(ia, iind, axis=0, mode="wrap")
expected = numpy.take_along_axis(a, ind, axis=0)
assert_array_equal(result, expected)

def test_mode_clip(self):
a = dpnp.array([-2, -1, 0, 1, 2])
ind = dpnp.array([-2, 2, -5, 4])

# numpy does not support keyword `mode`
result = dpnp.take_along_axis(a, ind, axis=0, mode="clip")
assert (result == dpnp.array([-2, 0, -2, 2])).all()


@pytest.mark.usefixtures("allow_fall_back_on_numpy")
def test_choose():
Expand Down
Loading