Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions docs/providers.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
### Model Provider

```python
def skyline_model_provider() -> torch.nn.Module:
def deepview_model_provider() -> torch.nn.Module:
pass
```

Expand All @@ -10,7 +10,7 @@ The model provider must take no arguments and return an instance of your model (
### Input Provider

```python
def skyline_input_provider(batch_size: int = 32) -> Tuple:
def deepview_input_provider(batch_size: int = 32) -> Tuple:
pass
```

Expand All @@ -20,7 +20,7 @@ The input provider must take a single `batch_size` argument that has a default v
### Iteration Provider

```python
def skyline_iteration_provider(model: torch.nn.Module) -> Callable:
def deepview_iteration_provider(model: torch.nn.Module) -> Callable:
pass
```

Expand Down Expand Up @@ -72,20 +72,20 @@ class ModelWithLoss(nn.Module):
return self.loss_fn(output, target)


def skyline_model_provider():
def deepview_model_provider():
# Return a GPU-based instance of our model (that returns a loss)
return ModelWithLoss().cuda()


def skyline_input_provider(batch_size=32):
def deepview_input_provider(batch_size=32):
# Return GPU-based inputs for our model
return (
torch.randn((batch_size, 3, 256, 256)).cuda(),
torch.randint(low=0, high=9, size=(batch_size,)).cuda(),
)


def skyline_iteration_provider(model):
def deepview_iteration_provider(model):
# Return a function that executes one training iteration
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
def iteration(*inputs):
Expand Down
6 changes: 3 additions & 3 deletions examples/densenet/entry_point.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,18 +4,18 @@
import densenet


def skyline_model_provider():
def deepview_model_provider():
return densenet.densenet121().cuda()


def skyline_input_provider(batch_size=16):
def deepview_input_provider(batch_size=16):
return (
torch.randn((batch_size, 3, 224, 224)).cuda(),
torch.randint(low=0, high=1000, size=(batch_size,)).cuda(),
)


def skyline_iteration_provider(model):
def deepview_iteration_provider(model):
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
def iteration(*inputs):
optimizer.zero_grad()
Expand Down
6 changes: 3 additions & 3 deletions examples/gnmt/entry_point.py
Original file line number Diff line number Diff line change
Expand Up @@ -249,7 +249,7 @@ def forward(self, src, src_len, tgt, tgt_len):
return loss / B


def skyline_model_provider():
def deepview_model_provider():
args = get_args()
vocab_size = 32317
model_config = {
Expand All @@ -267,7 +267,7 @@ def skyline_model_provider():
return model


def skyline_input_provider(batch_size=64):
def deepview_input_provider(batch_size=64):
vocab_size = 32000
src_len = 25
tgt_len = 25
Expand Down Expand Up @@ -297,7 +297,7 @@ def skyline_input_provider(batch_size=64):
return src, src_len_tensor, tgt, tgt_len_tensor


def skyline_iteration_provider(model):
def deepview_iteration_provider(model):
args = get_args()
opt_config = {
'optimizer': args.optimizer,
Expand Down
6 changes: 3 additions & 3 deletions examples/resnet/entry_point.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,18 +4,18 @@
import resnet


def skyline_model_provider():
def deepview_model_provider():
return resnet.resnet50().cuda()


def skyline_input_provider(batch_size=16):
def deepview_input_provider(batch_size=16):
return (
torch.randn((batch_size, 3, 224, 224)).cuda(),
torch.randint(low=0, high=1000, size=(batch_size,)).cuda(),
)


def skyline_iteration_provider(model):
def deepview_iteration_provider(model):
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
loss_fn = torch.nn.CrossEntropyLoss()
def iteration(inputs, targets):
Expand Down
6 changes: 3 additions & 3 deletions examples/resnet/entry_point_resnext.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,18 +4,18 @@
import resnet


def skyline_model_provider():
def deepview_model_provider():
return resnet.resnext50_32x4d().cuda()


def skyline_input_provider(batch_size=16):
def deepview_input_provider(batch_size=16):
return (
torch.randn((batch_size, 3, 224, 224)).cuda(),
torch.randint(low=0, high=1000, size=(batch_size,)).cuda(),
)


def skyline_iteration_provider(model):
def deepview_iteration_provider(model):
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
def iteration(*inputs):
optimizer.zero_grad()
Expand Down
6 changes: 3 additions & 3 deletions examples/testnet/entry_point.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,15 +13,15 @@ def forward(self, input):
return self.testnet(input).sum()


def skyline_model_provider():
def deepview_model_provider():
return TestNetWithLoss().cuda()


def skyline_input_provider(batch_size=32):
def deepview_input_provider(batch_size=32):
return (torch.randn((batch_size, 3, 128, 128)).cuda(),)


def skyline_iteration_provider(model):
def deepview_iteration_provider(model):
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
def iteration(*inputs):
optimizer.zero_grad()
Expand Down
6 changes: 3 additions & 3 deletions examples/transformer/entry_point.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ def model_config():
return opt


def skyline_model_provider():
def deepview_model_provider():
opt = model_config()
return TransformerWithLoss(Transformer(
opt.src_vocab_size,
Expand All @@ -104,7 +104,7 @@ def skyline_model_provider():
dropout=opt.dropout)).cuda()


def skyline_input_provider(batch_size=64):
def deepview_input_provider(batch_size=64):
vocab_size = 32000
src_seq_len = 25
tgt_seq_len = 25
Expand Down Expand Up @@ -141,7 +141,7 @@ def skyline_input_provider(batch_size=64):
return source, src_pos, target, tgt_pos, gold


def skyline_iteration_provider(transformer):
def deepview_iteration_provider(transformer):
opt = model_config()
optimizer = ScheduledOptim(
optim.Adam(
Expand Down
6 changes: 3 additions & 3 deletions examples/vgg/entry_point.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,18 +4,18 @@
import vgg


def skyline_model_provider():
def deepview_model_provider():
return vgg.vgg11().cuda()


def skyline_input_provider(batch_size=16):
def deepview_input_provider(batch_size=16):
return (
torch.randn((batch_size, 3, 224, 224)).cuda(),
torch.randint(low=0, high=1000, size=(batch_size,)).cuda(),
)


def skyline_iteration_provider(model):
def deepview_iteration_provider(model):
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
def iteration(*inputs):
optimizer.zero_grad()
Expand Down
8 changes: 4 additions & 4 deletions skyline/analysis/session.py
Original file line number Diff line number Diff line change
Expand Up @@ -35,9 +35,9 @@
habitat_found = False


MODEL_PROVIDER_NAME = "skyline_model_provider"
INPUT_PROVIDER_NAME = "skyline_input_provider"
ITERATION_PROVIDER_NAME = "skyline_iteration_provider"
MODEL_PROVIDER_NAME = "deepview_model_provider"
INPUT_PROVIDER_NAME = "deepview_input_provider"
ITERATION_PROVIDER_NAME = "deepview_iteration_provider"
BATCH_SIZE_ARG = "batch_size"


Expand Down Expand Up @@ -355,7 +355,7 @@ def measure_throughput(self):
)
if len(samples) == 0 or samples[0].batch_size != self._batch_size:
raise AnalysisError(
"Something went wrong with Skyline when measuring your "
"Something went wrong with DeepView.Profile when measuring your "
"model's throughput. Please file a bug."
)

Expand Down