|
7 | 7 | % Full summary: pmGenerator --transform data/w3.txt -f -n -t . -j 1
|
8 | 8 | % Step counting: pmGenerator --transform data/w3.txt -f -n -t . -p -2 -d
|
9 | 9 | % pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -p -2 -d
|
| 10 | +% Compact (2135 bytes): pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -s CCCpCCqrCsrtCCCqrCsrt,CCCpCqrsCCqrs,CCCpqrCqr,CCCNpqrCpr,CCNpCCNqrCCCCCCstuCtuvCCvwCxwyCCypCqp,CCNppCqp,CpCCpqCrq,CpCqCrp,CCCNpqCCCCNrsCCtCutvCCvwCrwxCCxyCpy,CCCCCpqrCsrtCqt,CCCpCqrsCrs,CpCNNCqrCsCqr,CCNCCppNqrCqr,CCNNpqCpq,CpCqCrNNp,CCpqCNNpq,CCNpqCNCrpq,CCNpqCNCrCspq,CCCpqCNprCsCNpr,CCpNCNppCqNCNpp,CNCpqCrCsp,CCpCpqCpq,CCpqCNCprq,CCCpqrCNpr,CCpqCCNppq,CpCCpqq,CCpqCCNqpq,CCpCqrCqCpr |
| 11 | +% Concrete (20789800 bytes): pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -e |
10 | 12 |
|
11 | 13 | CpCCNqCCNrsCptCCtqCrq = 1
|
12 | 14 | [0] CCNpCCNqrCCsCCNtCCNuvCswCCwtCutxCCxpCqp = D11
|
|
19 | 21 | [7] CCCNpqCCCNrCCNstCCuCCNvCCNwxCuyCCyvCwvzCCzrCsrqCCqaCpa = D[3][1]
|
20 | 22 | [8] CCCNpCCNqCCNrsCNptCCtqCrqCCCrqpCqpCCCCCrqpCqpuCvu = D[2][6]
|
21 | 23 | [9] CCCCCpCCNqCCNrsCtuCCuqCrqvCCCNqCCNrsCtuCCuqCrqvwCxw = D[8][0]
|
22 |
| -[10] CCCpCqrsCCqrs = DD1[9]1 |
23 |
| -[11] CCCCCpCCqrCsrtCCCqrCsrtuCCuvCwv = D[5]D[3][4] |
24 |
| -[12] CCCCCpqrCqrsCts = DD[10][0]1 |
25 |
| -[13] CCCCCCpqCrqsCtsuCqu = DD[10]DD[3]111 |
26 |
| -[14] CCpqCrCpq = D[10][9] |
27 |
| -[15] CCCpqrCqr = DDD[12]D[3][2]1[0] |
28 |
| -[16] CCCNpqrCpr = D[0]DD[8][1][10] |
29 |
| -[17] CCNpCCNqrCCCCCCstuCtuvCCvwCxwyCCypCqp = D1D[5]D[3]DD[12]11 |
30 |
| -[18] CCNppCqp = D[0]D[16][0] |
| 24 | +[10] CCCCCpCCqrCsrtCCCqrCsrtuCvu = D[8][1] |
| 25 | +[11] CCCpCqrsCCqrs = DD1[9]1 |
| 26 | +[12] CCCCCpCCqrCsrtCCCqrCsrtCuCCCqrCsrtCCCuCCCqrCsrtvCwv = D[3]D[3][4] |
| 27 | +[13] CCCCCNpqCCrCCNsCCNtuCrvCCvsCtsqCCqwCpwCxCCqwCpwCCCxCCqwCpwyCzy = D[3]D[3]D1[6] |
| 28 | +[14] CCCCCpqrCqrsCts = DD[11][0]1 |
| 29 | +[15] CCCCCCpqCrqsCtsuCqu = DD[11]DD[3]111 |
| 30 | +[16] CCpqCrCpq = D[11][9] |
| 31 | +[17] CCCpqrCqr = DDD[14]D[3][2]1[0] |
| 32 | +[18] CCCNpqrCpr = D[0]D[10][11] |
| 33 | +[19] CCNpCCNqrCCCCCCstuCtuvCCvwCxwyCCypCqp = D1D[5]D[3]DD[14]11 |
| 34 | +[20] CCNppCqp = D[0]D[18][0] |
31 | 35 |
|
32 | 36 | % Axiom 1 by Frege (CpCqp), i.e. 0→(1→0) ; 67 steps
|
33 |
| -[19] CpCqp = DDD[12][12]11 |
| 37 | +[21] CpCqp = DDD[14][14]11 |
34 | 38 |
|
35 |
| -[20] CCNpCCNqrCCsCtsuCCupCqp = D1[19] |
36 |
| -[21] CCCCNpqCrqpCsp = D[0]D[13]DD[3][7][3] |
37 |
| -[22] CCpqCrCsCpq = D[10][14] |
38 |
| -[23] CpCCpqCrq = D[15][11] |
39 |
| -[24] CpCqCNpr = D[16][14] |
40 |
| -[25] CpCqCrp = D[15][19] |
41 |
| -[26] CCNpCCNqrCCCCNstCCuCvuwCCwxCsxyCCypCqp = D1D[15][20] |
| 39 | +[22] CCNpCCNqrCCsCtsuCCupCqp = D1[21] |
| 40 | +[23] CCCCNpqCrqpCsp = D[0]D[15]DD[3][7][3] |
| 41 | +[24] CpCCpqCrq = DD[1]DDD[3]D[3]D1[7][3][11][0] |
| 42 | +[25] CCNpCCNqrCCCCNstCCuCvuwCCwxCsxyCCypCqp = D1D[11][22] |
| 43 | +[26] CpCqCrp = D[17][16] |
| 44 | +[27] CCCNpqCCCCNrsCCtCutvCCvwCrwxCCxyCpy = D[11][25] |
| 45 | +[28] CCCCCpqrCsrtCqt = DD[11]DD[3]D[11]1[20]1 |
42 | 46 |
|
43 | 47 | % Axiom 3 by Łukasiewicz (CpCNpq), i.e. 0→(¬0→1) ; 127 steps
|
44 |
| -[27] CpCNpq = D[16]D[6][18] |
| 48 | +[29] CpCNpq = D[18]D[6][20] |
45 | 49 |
|
46 |
| -[28] CpCqq = D[16]D[1][23] |
47 |
| -[29] CCCpCqrsCrs = DD1[18]DD[11]1D[1]DDD[3]D[3]D1[7][3][10] |
48 |
| -[30] CCCCCpqrCsrtCqt = DD1DD[3][14][18]D[14]1 |
49 |
| -[31] CCCNpqCCCCNrsCCtCutvCCvwCrwxCCxyCpy = D[15][26] |
| 50 | +[30] CCCpCqrsCrs = DD1[20]DD[13][5][11] |
50 | 51 |
|
51 |
| -% Identity principle (Cpp), i.e. 0→0 ; 283 steps |
52 |
| -[32] Cpp = D[28][28] |
| 52 | +% Identity principle (Cpp), i.e. 0→0 ; 135 steps |
| 53 | +[31] Cpp = DD[18]D[0][24]1 |
53 | 54 |
|
54 |
| -[33] CCNpCCNqrCCsstCCtpCqp = D1[32] |
55 |
| -[34] CpCNNCqrCsCqr = D[21]DD[29][26]D[21]D[1]DD[1]D[14][24]D[16][22] |
56 |
| -[35] CCNCCppNqrCqr = D[31]D[33]D[34][34] |
57 |
| -[36] CCCppNqCqr = D[16][35] |
58 |
| -[37] CCNNpqCpq = D[31]D[17]D[15]DD[31]D[17]D[35][25][25] |
59 |
| -[38] CpCqCrNNp = D[37][25] |
60 |
| -[39] CpCqCrNNCNps = D[16][38] |
61 |
| -[40] CCpqCNNpq = D[31]D[17][38] |
62 |
| -[41] CCpqCNCNNprq = D[31]D[17][39] |
63 |
| -[42] CpCNNCNqqq = D[18]D[41][18] |
64 |
| -[43] CCNpqCNCrpq = D[31]D[17]D[40]D[15][38] |
65 |
| -[44] CCNpqCNCNprq = D[31]D[17]D[40][39] |
66 |
| -[45] CCNpqCNCrCspq = D[31]D[17]D[40]D[29][38] |
67 |
| -[46] CCNpCqpCrCqp = D[17]D[43][25] |
68 |
| -[47] CpCCNCqrrCqr = D[46][23] |
69 |
| -[48] CCpqCCCrrpq = D[33][47] |
70 |
| -[49] CCCpqCNprCsCNpr = D[17]D[44]D[30]D[23][36] |
| 55 | +[32] CCNpCCNqrCCsstCCtpCqp = D1[31] |
| 56 | +[33] CpCNNCqrCsCqr = D[23]DD[11]D[3][25]D[23]D[1]DD[0]D[10]D[0]DD[12]DD1[2]1[11]DD[0]DDD[3]D[3]D1D[5][3][11][11][10] |
| 57 | +[34] CCNCCppNqrCqr = D[27]D[32]D[33][33] |
| 58 | +[35] CCCppNqCqr = D[18][34] |
| 59 | +[36] CCNNpqCpq = D[27]D[19]D[17]DD[27]D[19]D[34][26][26] |
| 60 | +[37] CpCqCrNNp = D[36][26] |
| 61 | +[38] CpCqCrNNCNps = D[18][37] |
| 62 | +[39] CCpqCNNpq = D[27]D[19][37] |
| 63 | +[40] CCpqCNCNNprq = D[27]D[19][38] |
| 64 | +[41] CpCNNCNqqq = D[20]D[40][20] |
| 65 | +[42] CCNpqCNCrpq = D[27]D[19]D[39]D[17][37] |
| 66 | +[43] CCNpqCNCNprq = D[27]D[19]D[39][38] |
| 67 | +[44] CCNpqCNCrCspq = D[27]D[19]D[39]D[30][37] |
| 68 | +[45] CCNpCqpCrCqp = D[19]D[42][26] |
| 69 | +[46] CpCCNCqrrCqr = D[45][24] |
| 70 | +[47] CCpqCCCrrpq = D[32][46] |
| 71 | +[48] CCCpqCNprCsCNpr = D[19]D[43]D[28]D[24][35] |
71 | 72 |
|
72 |
| -% Axiom 2 by Łukasiewicz (CCNppp), i.e. (¬0→0)→0 ; 9109 steps |
73 |
| -[50] CCNppp = D[37]D[42][42] |
| 73 | +% Axiom 2 by Łukasiewicz (CCNppp), i.e. (¬0→0)→0 ; 6541 steps |
| 74 | +[49] CCNppp = D[36]D[41][41] |
74 | 75 |
|
75 |
| -[51] CpCNCqrCNqs = D[49][49] |
76 |
| -[52] CCpNCNppCqNCNpp = D[17]D[40]D[30]D[23]D[48][50] |
77 |
| -[53] CNCpqCrCsp = DDD[48][37]DD[17]D[44][25]D[40][46]D[45]DD[49][24]D[51][51] |
78 |
| -[54] CCpCpqCrCpq = D[17][53] |
79 |
| -[55] CpCCqCqrCqr = D[54][54] |
80 |
| -[56] CCpCpqCpq = D[55][55] |
81 |
| -[57] CCpqCNCprq = D[31]D[17]DD[56][49]D[37]D[15][22] |
82 |
| -[58] CCCpqrCNpr = D[31]D[17]D[57][38] |
83 |
| -[59] CCpqCCNppq = DD[10]D1[1]D[17]DD[31]DD[31]D[17]D[40]DD[31][52][25]D[58][52][25] |
84 |
| -[60] CCNCpqrCCrqCpq = DD[59][29]D[45]1 |
85 |
| -[61] CCpCqCprCqCpr = D[56]D[17]D[43][53] |
86 |
| -[62] CpCCpqq = DD[61]D[13]D[3]D[3]D1[6]DD[20][47][56] |
87 |
| -[63] CCpqCCNqpq = D[17]DDD[15][17]D[59]D[30][56][59] |
| 76 | +[50] CpCNCqrCNqs = D[48][48] |
| 77 | +[51] CCpNCNppCqNCNpp = D[19]D[39]D[28]D[24]D[47][49] |
| 78 | +[52] CNCpqCrCsp = DDD[47][36]DD[19]D[43][26]D[39][45]D[44]DD[48]DD[0]DD[12][5][11][10]D[50][50] |
| 79 | +[53] CCpCpqCrCpq = D[19][52] |
| 80 | +[54] CpCCqCqrCqr = D[53][53] |
| 81 | +[55] CCpCpqCpq = D[54][54] |
| 82 | +[56] CCpqCNCprq = D[27]D[19]DD[55][48]D[36]D[17]D[11][16] |
| 83 | +[57] CCCpqrCNpr = D[27]D[19]D[56][37] |
| 84 | +[58] CCpqCCNppq = DD[11]D1[1]D[19]DD[27]DD[27]D[19]D[39]DD[27][51][26]D[57][51][26] |
| 85 | +[59] CCNCpqrCCrqCpq = DD[58][30]D[44]1 |
| 86 | +[60] CCpCqCprCqCpr = D[55]D[19]D[42][52] |
| 87 | +[61] CpCCpqq = DD[60]D[15][13]DD[22][46][55] |
| 88 | +[62] CCpqCCNqpq = D[19]DDD[11][19]D[58]D[28][55][58] |
88 | 89 |
|
89 |
| -% Axiom 3 for Frege by Łukasiewicz (CCNpNqCqp), i.e. (¬0→¬1)→(1→0) ; 1682551 steps |
90 |
| -[64] CCNpNqCqp = D[37]D[61]DD[63]D[15][36]D[43]D[56]D[41][45] |
| 90 | +% Axiom 3 for Frege by Łukasiewicz (CCNpNqCqp), i.e. (¬0→¬1)→(1→0) ; 1193987 steps |
| 91 | +[63] CCNpNqCqp = D[36]D[60]DD[62]D[17][35]D[42]D[55]D[40][44] |
91 | 92 |
|
92 |
| -% Axiom 1 by Łukasiewicz (CCpqCCqrCpr), i.e. (0→1)→((1→2)→(0→2)) ; 1686507 steps |
93 |
| -[65] CCpqCCqrCpr = DDD1[57]D[19]D[59][62][60] |
| 93 | +% Axiom 1 by Łukasiewicz (CCpqCCqrCpr), i.e. (0→1)→((1→2)→(0→2)) ; 1196969 steps |
| 94 | +[64] CCpqCCqrCpr = DDD1[56]D[21]D[58][61][59] |
94 | 95 |
|
95 |
| -[66] CCCCpqCrqsCCrps = D[65][65] |
96 |
| -[67] CCpCqrCqCpr = D[66]D[65][62] |
| 96 | +[65] CCCCpqCrqsCCrps = D[64][64] |
| 97 | +[66] CCpCqrCqCpr = D[65]D[64][61] |
97 | 98 |
|
98 |
| -% Axiom 2 by Frege (CCpCqrCCpqCpr), i.e. (0→(1→2))→((0→1)→(0→2)) ; 25914517 steps |
99 |
| -[68] CCpCqrCCpqCpr = D[67]D[66]D[60]DD[67]D[58][63]D[67]D[66][58] |
| 99 | +% Axiom 2 by Frege (CCpCqrCCpqCpr), i.e. (0→(1→2))→((0→1)→(0→2)) ; 18391835 steps |
| 100 | +[67] CCpCqrCCpqCpr = D[66]D[65]D[59]DD[66]D[57][62]D[66]D[65][57] |
0 commit comments