|
7 | 7 | % Full summary: pmGenerator --transform data/w3.txt -f -n -t . -j 1
|
8 | 8 | % Step counting: pmGenerator --transform data/w3.txt -f -n -t . -p -2 -d
|
9 | 9 | % pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -p -2 -d
|
10 |
| -% Compact (2367 bytes): pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -s CCCpCCqrCsrtCCCqrCsrt,CCCpCqrsCCqrs,CCCCCpqrCqrsCts,CCCpqrCqr,CCCNpqrCpr,CCNpCCNqrCCCCCCstuCtuvCCvwCxwyCCypCqp,CCCCNpqCrqpCsp,CpCCpqCrq,CpCqCrp,CCCCCCpqCrqsNttCut,CCCNpqCCCCNrsCCtCutvCCvwCrwxCCxyCpy,CCCCCpqrCsrtCqt,CCCpCqrsCrs,CCpNCCqCrqpCsNCCqCrqp,CCNCCpCqpNrsCrs,CCCpqCNprCsCNpr,CpCCNCqrrCqr,CCpqCNNpq,CCNNpqCpq,CCNpqCNCrpq,CCNpqCNCrCspq,CCpNCNppCqNCNpp,CNCpqCrCsp,CCpCpqCpq,CCpqCNCprq,CCCpqrCNpr,CCpqCCNppq,CpCCpqq,CCpqCCNqpq,CCpCqrCqCpr |
11 |
| -% Concrete (5271958 bytes): pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -e |
| 10 | +% Compact (2509 bytes): pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -s CCCpCCqrCsrtCCCqrCsrt,CCCCCpCCqrCsrtCCCqrCsrtuCvu,CCCpCqrsCCqrs,CCCCCpqrCqrsCts,CCpqCCCpqrCsr,CCCpqrCqr,CCCNpqrCpr,CCNpCCNqrCCCCCCstuCtuvCCvwCxwyCCypCqp,CCNppCqp,CCCCNpqCrqpCsp,CCCNpqCCrCsCtsqCCquCpu,CpCCpqCrq,CpCqCrp,CCCCCCpqCrqsNttCut,CCCCCNpqrCsrtCpt,CCCNpqCCCCNrsCCtCutvCCvwCrwxCCxyCpy,CCCCCpqrCsrtCqt,CCCpCqrsCrs,CNNCpqCrCpq,CCNCCpCqpNrsCrs,CCCpqCNprCsCNpr,CpCCNCqrrCqr,CCpNpCqNp,CCpqCNNpq,CCCpqrCNpr,CCpNCNppCqNCNpp,CpCqCrNNp,CCNpqCNCrpq,CCNpqCNCrCspq,CCpqCCNppq,CNCpqCrCsp,CCpCpqCpq,CCpqCCNqpq,CpCCpqq,CCpCqrCqCpr |
| 11 | +% Concrete (3128030 bytes): pmGenerator --transform data/w3.txt -f -n -t CpCqp,CCpCqrCCpqCpr,CCNpNqCqp,Cpp,CCpqCCqrCpr,CCNppp,CpCNpq -j -1 -e |
12 | 12 |
|
13 | 13 | CpCCNqCCNrsCptCCtqCrq = 1
|
14 | 14 | [0] CCNpCCNqrCCsCCNtCCNuvCswCCwtCutxCCxpCqp = D11
|
|
27 | 27 | [13] CCCpCqrsCCqrs = DD1[10]1
|
28 | 28 | [14] CCCCCpCCqrCsrtCCCqrCsrtCuCCCqrCsrtCCCuCCCqrCsrtvCwv = D[3]D[3][4]
|
29 | 29 | [15] CCCCCNpqCCrCCNsCCNtuCrvCCvsCtsqCCqwCpwCxCCqwCpwCCCxCCqwCpwyCzy = D[3]D[3]D1[7]
|
30 |
| -[16] CCCCCpqrCqrsCts = DD[13][0]1 |
31 |
| -[17] CCCCCCpqCrqsCtsuCqu = DD[13]DD[3]111 |
32 |
| -[18] CCCNpqCCCCrstCstqCCquCpu = D[3]DD[16]11 |
33 |
| -[19] CCpqCrCpq = D[13][10] |
| 30 | +[16] CCCpqCrqCCCCpqCrqsCts = D[3][11] |
| 31 | +[17] CCCCCpqrCqrsCts = DD[13][0]1 |
| 32 | +[18] CCCCCCpqCrqsCtsuCqu = DD[13]DD[3]111 |
| 33 | +[19] CCCNpqCCCCrstCstqCCquCpu = D[3]DD[17]11 |
34 | 34 | [20] CCpqCCCpqrCsr = D[13][11]
|
35 |
| -[21] CCCpqrCqr = DDD[16]D[3][2]1[0] |
| 35 | +[21] CCCpqrCqr = DDD[17]D[3][2]1[0] |
36 | 36 | [22] CCCNpqrCpr = D[0]D[12][13]
|
37 |
| -[23] CCNpCCNqrCCCCCCstuCtuvCCvwCxwyCCypCqp = D1D[6][18] |
38 |
| -[24] CCNppCqp = D[0]D[22][0] |
39 |
| -[25] CpCqCrq = DD[16][16]1 |
40 |
| -[26] CCNpCCNqrCCsCtCutvCCvpCqp = D1[25] |
| 37 | +[23] CCNpCCNqrCCCCCCstuCtuvCCvwCxwyCCypCqp = D1D[6][19] |
| 38 | +[24] CpCCqpCrp = D[22][0] |
| 39 | +[25] CCNppCqp = D[0][24] |
| 40 | +[26] CpCqCrq = DD[17][17]1 |
| 41 | +[27] CCNpCCNqrCCsCtCutvCCvpCqp = D1[26] |
41 | 42 |
|
42 | 43 | % Axiom 1 by Frege (CpCqp), i.e. 0→(1→0) ; 67 steps
|
43 |
| -[27] CpCqp = D[25]1 |
| 44 | +[28] CpCqp = D[26]1 |
44 | 45 |
|
45 |
| -[28] CCNpCCNqrCCsCtsuCCupCqp = D1[27] |
46 |
| -[29] CCCCNpqCrqpCsp = D[0]D[17]DD[3][8][3] |
47 |
| -[30] CCCNpqCCrCsCtsqCCquCpu = D[3][26] |
48 |
| -[31] CpCCpqCrq = DD[1]DDD[3]D[3]D1[8][3][13][0] |
49 |
| -[32] CpCqCrp = D[21][19] |
50 |
| -[33] CCCCCCpqCrqsNttCut = D[0]D[21]DDD1[6]1D[6][10] |
51 |
| -[34] CCCNpqCCCCNrsCCtCutvCCvwCrwxCCxyCpy = D[13]D1D[13][28] |
52 |
| -[35] CCCCCpqrCsrtCqt = DD[13]DD[3]D[13]1[24]1 |
| 46 | +[29] CCNpCCNqrCCsCtsuCCupCqp = D1[28] |
| 47 | +[30] CCCCNpqCrqpCsp = D[0]D[18]DD[3][8][3] |
| 48 | +[31] CCCNpqCCrCsCtsqCCquCpu = D[3][27] |
| 49 | +[32] CpCCpqCrq = DD[1]DDD[3]D[3]D1[8][3][13][0] |
| 50 | +[33] CCCNpqCCrCsCtsuCCuvCpv = D[13][27] |
| 51 | +[34] CpCqCrp = D[21]D[13][10] |
| 52 | +[35] CCCCCCpqCrqsNttCut = D[0]D[21]DDD1[6]1D[6][10] |
| 53 | +[36] CCCCCNpqrCsrtCpt = DD[13]D1DDD[17]D[3]D[3]D1[11]1[0]1 |
| 54 | +[37] CCCNpqCCCCNrsCCtCutvCCvwCrwxCCxyCpy = D[13]D1D[13][29] |
| 55 | +[38] CCCCCpqrCsrtCqt = DD[13]DD[3]D[13]1[25]1 |
53 | 56 |
|
54 | 57 | % Axiom 3 by Łukasiewicz (CpCNpq), i.e. 0→(¬0→1) ; 127 steps
|
55 |
| -[36] CpCNpq = D[22]D[7][24] |
| 58 | +[39] CpCNpq = D[22]D[7][25] |
56 | 59 |
|
57 |
| -[37] CCCpCqrsCrs = DD1[24]DD[15][6][13] |
| 60 | +[40] CCCpCqrsCrs = DD1[25]DD[15][6][13] |
58 | 61 |
|
59 | 62 | % Identity principle (Cpp), i.e. 0→0 ; 135 steps
|
60 |
| -[38] Cpp = DD[22]D[0][31]1 |
| 63 | +[41] Cpp = DD[22]D[0][32]1 |
61 | 64 |
|
62 |
| -[39] CCNpCCNqrCCsstCCtpCqp = D1[38] |
63 |
| -[40] CCpNCCqCrqpCsNCCqCrqp = D[28]DD[29]DD[6]D[3]D1[13]D[29]D[1]DD[0]D[12]D[0]DD[14][5][13]DD[0]DDD[3]D[3]D1D[6][3][13][13][12]1 |
64 |
| -[41] CCNCCpCqpNrsCrs = D[18][40] |
65 |
| -[42] CpCqCrNCCsCtsNp = D[41][32] |
66 |
| -[43] CCCpqCNprCsCNpr = D[23]D[35]D[20]D[22]DD[13][26]D[22][40] |
67 |
| -[44] CpCCNCqrrCqr = DD[39]D[21]DDD[13]D1DDD[16]D[3]D[3]D1[11]1[0]1DD[3][11][41][29] |
68 |
| -[45] CCpqCCCrrpq = D[39][44] |
69 |
| -[46] CCpqCNNpq = DD[33]DD[30]D[39]D[22]D[13][42][31]1 |
70 |
| -[47] CCNNpqCpq = D[34]D[23]D[35]D[20]DD[22]D[39]D[41][31]1 |
71 |
| -[48] CpCqCrNNp = D[47][32] |
72 |
| -[49] CpCqCrNNCNps = D[22][48] |
| 65 | +[42] CCNpCCNqrCCsstCCtpCqp = D1[41] |
| 66 | +[43] CNNCpqCrCpq = DD[30]DD[6]D[3]D1[13]D[30]D[1]DD[0]D[12]D[0]DD[14][5][13]DD[0]DDD[3]D[3]D1D[6][3][13][13][12]1 |
| 67 | +[44] CCpNCCqCrqpCsNCCqCrqp = D[29][43] |
| 68 | +[45] CCNCCpCqpNrsCrs = D[19][44] |
| 69 | +[46] CpCqCrNCCsCtsNp = D[45][34] |
| 70 | +[47] CCCpqCNprCsCNpr = D[23]D[38]D[20]D[22]D[33]D[22][44] |
| 71 | +[48] CpCCNCqrrCqr = DD[42]D[21]D[36]D[16][45][30] |
| 72 | +[49] CCCpCqpNCNNCNrrsCtr = DD[31]D[42]D[22][46][25] |
| 73 | +[50] CCpNpCqNp = D[23]D[38]D[20]DD[22]D[42]D[45][32]1 |
| 74 | +[51] CCpqCNNpq = DD[35]DD[31]D[42]D[22]D[13][46][32]1 |
| 75 | +[52] CCNNpqCpq = D[31][50] |
| 76 | +[53] CCCpqrCNpr = DDD[42]D[38]D[20]D[22]D[33]D[13]D[22]D[42][43][20]1 |
| 77 | +[54] CCpNCNppCqNCNpp = D[23]DD[30]D[20]D[21][49]1 |
| 78 | +[55] CpCqCrNNp = D[22]D[42]D[21]DD[31]D[42]D[21][46][24] |
| 79 | +[56] CpCqCrNNCNps = D[22][55] |
73 | 80 |
|
74 |
| -% Axiom 2 by Łukasiewicz (CCNppp), i.e. (¬0→0)→0 ; 2225 steps |
75 |
| -[50] CCNppp = D[47]DD[33]DD[30]D[39]D[22][42][24]1 |
| 81 | +% Axiom 2 by Łukasiewicz (CCNppp), i.e. (¬0→0)→0 ; 2177 steps |
| 82 | +[57] CCNppp = D[52]DD[35][49]1 |
76 | 83 |
|
77 |
| -[51] CCNpqCNCrpq = D[34]D[23]D[46]D[21][48] |
78 |
| -[52] CCNpqCNCrCspq = D[34]D[23]D[46]D[37][48] |
79 |
| -[53] CCpNCNppCqNCNpp = D[23]D[46]D[35]D[31]D[45][50] |
80 |
| -[54] CNCpqCrCsp = DDD[45][47]DD[23]DD[34]D[23]D[46][49][32]D[46]D[23]D[51][32]D[52]DD[43]DD[0]DD[14][6][13][12]1 |
81 |
| -[55] CCpCpqCrCpq = D[23][54] |
82 |
| -[56] CpCCqCqrCqr = D[55][55] |
83 |
| -[57] CCpCpqCpq = D[56][56] |
84 |
| -[58] CCpqCNCprq = D[34]D[23]DD[57][43]D[47]D[21]D[13][19] |
85 |
| -[59] CCCpqrCNpr = D[34]D[23]D[58][48] |
86 |
| -[60] CCpqCCNppq = DD[13]D1[1]D[23]DD[34]DD[34]D[23]D[46]DD[34][53][32]D[59][53][32] |
87 |
| -[61] CCpCqCprCqCpr = D[57]D[23]D[51][54] |
88 |
| -[62] CCNCpqrCCrqCpq = DD[60][37]D[52]1 |
89 |
| -[63] CpCCpqq = DD[61]D[17][15]DD[28][44][57] |
90 |
| -[64] CCpqCCNqpq = D[23]DDD[13][23]D[60]D[35][57][60] |
| 84 | +[58] CCNpqCNCrpq = D[37]D[23]D[51]D[21][55] |
| 85 | +[59] CCNpqCNCrCspq = D[37]D[23]D[51]D[40][55] |
| 86 | +[60] CCpqCCNppq = DD[13]D1[1]D[23]DD[37]DD[37]D[23]D[51]DD[37][54][34]D[53][54][34] |
| 87 | +[61] CCNCpqrCCrqCpq = DD[60][40]D[59]1 |
| 88 | +[62] CNCpqCrCsp = DDDD[42][48][52]DD[23]DD[37]D[23]D[51][56][34]D[51]D[23]D[58][34]D[59]DD[47]DD[0]DD[14][6][13][12]1 |
| 89 | +[63] CCpCpqCrCpq = D[23][62] |
| 90 | +[64] CpCCqCqrCqr = D[63][63] |
| 91 | +[65] CCpCpqCpq = D[64][64] |
| 92 | +[66] CCpqCCNqpq = D[23]DDD[13][23]D[60]D[38][65][60] |
| 93 | +[67] CCpCqCprCqCpr = D[65]D[23]D[58][62] |
| 94 | +[68] CpCCpqq = DD[67]D[18][15]DD[29][48][65] |
91 | 95 |
|
92 |
| -% Axiom 1 by Łukasiewicz (CCpqCCqrCpr), i.e. (0→1)→((1→2)→(0→2)) ; 303787 steps |
93 |
| -[65] CCpqCCqrCpr = DDD1[58]D[27]D[60][63][62] |
| 96 | +% Axiom 1 by Łukasiewicz (CCpqCCqrCpr), i.e. (0→1)→((1→2)→(0→2)) ; 180451 steps |
| 97 | +[69] CCpqCCqrCpr = DDD1D[37]D[23]DD[65][47]D[36]D[16][50]D[28]D[60][68][61] |
94 | 98 |
|
95 |
| -% Axiom 3 for Frege by Łukasiewicz (CCNpNqCqp), i.e. (¬0→¬1)→(1→0) ; 306275 steps |
96 |
| -[66] CCNpNqCqp = D[47]D[61]DD[64]D[21]D[22][41]D[51]D[57]DD[34]D[23][49][52] |
| 99 | +% Axiom 3 for Frege by Łukasiewicz (CCNpNqCqp), i.e. (¬0→¬1)→(1→0) ; 182879 steps |
| 100 | +[70] CCNpNqCqp = D[52]D[67]DD[66]D[21]D[22][45]D[58]D[65]DD[37]D[23][56][59] |
97 | 101 |
|
98 |
| -[67] CCCCpqCrqsCCrps = D[65][65] |
99 |
| -[68] CCpCqrCqCpr = D[67]D[65][63] |
| 102 | +[71] CCCCpqCrqsCCrps = D[69][69] |
| 103 | +[72] CCpCqrCqCpr = D[71]D[69][68] |
100 | 104 |
|
101 |
| -% Axiom 2 by Frege (CCpCqrCCpqCpr), i.e. (0→(1→2))→((0→1)→(0→2)) ; 4659203 steps |
102 |
| -[69] CCpCqrCCpqCpr = D[68]D[67]D[62]DD[68]D[59][64]D[68]D[67][59] |
| 105 | +% Axiom 2 by Frege (CCpCqrCCpqCpr), i.e. (0→(1→2))→((0→1)→(0→2)) ; 2762055 steps |
| 106 | +[73] CCpCqrCCpqCpr = D[72]D[71]D[61]DD[72]D[53][66]D[72]D[71][53] |
0 commit comments