Skip to content

Commit 26ba852

Browse files
committed
Add langchain standard integration tests
1 parent d67221a commit 26ba852

File tree

5 files changed

+1188
-240
lines changed

5 files changed

+1188
-240
lines changed

langchain/pyproject.toml

Lines changed: 6 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,11 @@ Issues = "https://github.com/vectorize-io/integrations-python/issues"
3333
dev = [
3434
"mypy>=1.17.1,<1.18",
3535
"pytest>=8.3.3",
36+
"pytest-asyncio>=0.26.0",
3637
"ruff>=0.12.7,<0.13",
38+
"langchain-tests>=0.3.20",
39+
"requests>=2.31.0",
40+
"types-requests>=2.31.0",
3741
]
3842

3943
[tool.ruff.lint]
@@ -73,3 +77,5 @@ packages = ["langchain_vectorize"]
7377
requires = ["hatchling"]
7478
build-backend = "hatchling.build"
7579

80+
[tool.pytest.ini_options]
81+
asyncio_mode = "auto"

langchain/tests/conftest.py

Lines changed: 188 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,188 @@
1+
import json
2+
import logging
3+
import os
4+
from collections.abc import Iterator
5+
from pathlib import Path
6+
from typing import Literal
7+
8+
import pytest
9+
import requests
10+
import urllib3
11+
from vectorize_client.api.ai_platform_connectors_api import AIPlatformConnectorsApi
12+
from vectorize_client.api.destination_connectors_api import DestinationConnectorsApi
13+
from vectorize_client.api.pipelines_api import PipelinesApi
14+
from vectorize_client.api.source_connectors_api import SourceConnectorsApi
15+
from vectorize_client.api.uploads_api import UploadsApi
16+
from vectorize_client.api_client import ApiClient
17+
from vectorize_client.configuration import Configuration
18+
from vectorize_client.models.ai_platform_config_schema import AIPlatformConfigSchema
19+
from vectorize_client.models.ai_platform_type_for_pipeline import (
20+
AIPlatformTypeForPipeline,
21+
)
22+
from vectorize_client.models.create_source_connector_request import (
23+
CreateSourceConnectorRequest,
24+
)
25+
from vectorize_client.models.destination_connector_type_for_pipeline import (
26+
DestinationConnectorTypeForPipeline,
27+
)
28+
from vectorize_client.models.file_upload import FileUpload
29+
from vectorize_client.models.pipeline_ai_platform_connector_schema import (
30+
PipelineAIPlatformConnectorSchema,
31+
)
32+
from vectorize_client.models.pipeline_configuration_schema import (
33+
PipelineConfigurationSchema,
34+
)
35+
from vectorize_client.models.pipeline_destination_connector_schema import (
36+
PipelineDestinationConnectorSchema,
37+
)
38+
from vectorize_client.models.pipeline_source_connector_schema import (
39+
PipelineSourceConnectorSchema,
40+
)
41+
from vectorize_client.models.schedule_schema import ScheduleSchema
42+
from vectorize_client.models.schedule_schema_type import ScheduleSchemaType
43+
from vectorize_client.models.source_connector_type import SourceConnectorType
44+
from vectorize_client.models.start_file_upload_to_connector_request import (
45+
StartFileUploadToConnectorRequest,
46+
)
47+
48+
logger = logging.getLogger(__name__)
49+
50+
51+
@pytest.fixture(scope="session")
52+
def api_token() -> str:
53+
token = os.getenv("VECTORIZE_TOKEN")
54+
if not token:
55+
msg = "Please set the VECTORIZE_TOKEN environment variable"
56+
raise ValueError(msg)
57+
return token
58+
59+
60+
@pytest.fixture(scope="session")
61+
def org_id() -> str:
62+
org = os.getenv("VECTORIZE_ORG")
63+
if not org:
64+
msg = "Please set the VECTORIZE_ORG environment variable"
65+
raise ValueError(msg)
66+
return org
67+
68+
69+
@pytest.fixture(scope="session")
70+
def environment() -> Literal["prod", "dev", "local", "staging"]:
71+
env = os.getenv("VECTORIZE_ENV", "prod")
72+
if env not in {"prod", "dev", "local", "staging"}:
73+
msg = "Invalid VECTORIZE_ENV environment variable."
74+
raise ValueError(msg)
75+
return env # type: ignore[return-value]
76+
77+
78+
@pytest.fixture(scope="session")
79+
def api_client(api_token: str, environment: str) -> Iterator[ApiClient]:
80+
header_name = None
81+
header_value = None
82+
if environment == "prod":
83+
host = "https://api.vectorize.io/v1"
84+
elif environment == "dev":
85+
host = "https://api-dev.vectorize.io/v1"
86+
elif environment == "local":
87+
host = "http://localhost:3000/api"
88+
header_name = "x-lambda-api-key"
89+
header_value = api_token
90+
else:
91+
host = "https://api-staging.vectorize.io/v1"
92+
93+
with ApiClient(
94+
Configuration(host=host, access_token=api_token, debug=True),
95+
header_name,
96+
header_value,
97+
) as api:
98+
yield api
99+
100+
101+
@pytest.fixture(scope="session")
102+
def pipeline_id(api_client: ApiClient, org_id: str) -> Iterator[str]:
103+
pipelines = PipelinesApi(api_client)
104+
105+
connectors_api = SourceConnectorsApi(api_client)
106+
response = connectors_api.create_source_connector(
107+
org_id,
108+
CreateSourceConnectorRequest(FileUpload(name="from api", type="FILE_UPLOAD")),
109+
)
110+
source_connector_id = response.connector.id
111+
logger.info("Created source connector %s", source_connector_id)
112+
113+
uploads_api = UploadsApi(api_client)
114+
upload_response = uploads_api.start_file_upload_to_connector(
115+
org_id,
116+
source_connector_id,
117+
StartFileUploadToConnectorRequest( # type: ignore[call-arg]
118+
name="research.pdf",
119+
content_type="application/pdf",
120+
metadata=json.dumps({"created-from-api": True}),
121+
),
122+
)
123+
124+
urllib3.PoolManager()
125+
this_dir = Path(__file__).parent
126+
file_path = this_dir / "research.pdf"
127+
128+
with file_path.open("rb") as f:
129+
http_response = requests.put(
130+
upload_response.upload_url,
131+
data=f,
132+
headers={
133+
"Content-Type": "application/pdf",
134+
},
135+
timeout=60,
136+
)
137+
http_response.raise_for_status()
138+
logger.info("Upload successful")
139+
140+
ai_platforms = AIPlatformConnectorsApi(api_client).get_ai_platform_connectors(
141+
org_id
142+
)
143+
builtin_ai_platform = next(
144+
c.id for c in ai_platforms.ai_platform_connectors if c.type == "VECTORIZE"
145+
)
146+
logger.info("Using AI platform %s", builtin_ai_platform)
147+
148+
vector_databases = DestinationConnectorsApi(api_client).get_destination_connectors(
149+
org_id
150+
)
151+
builtin_vector_db = next(
152+
c.id for c in vector_databases.destination_connectors if c.type == "VECTORIZE"
153+
)
154+
logger.info("Using destination connector %s", builtin_vector_db)
155+
156+
pipeline_response = pipelines.create_pipeline(
157+
org_id,
158+
PipelineConfigurationSchema( # type: ignore[call-arg]
159+
source_connectors=[
160+
PipelineSourceConnectorSchema(
161+
id=source_connector_id,
162+
type=SourceConnectorType.FILE_UPLOAD,
163+
config={},
164+
)
165+
],
166+
destination_connector=PipelineDestinationConnectorSchema(
167+
id=builtin_vector_db,
168+
type=DestinationConnectorTypeForPipeline.VECTORIZE,
169+
config={},
170+
),
171+
ai_platform_connector=PipelineAIPlatformConnectorSchema(
172+
id=builtin_ai_platform,
173+
type=AIPlatformTypeForPipeline.VECTORIZE,
174+
config=AIPlatformConfigSchema(),
175+
),
176+
pipeline_name="Test pipeline",
177+
schedule=ScheduleSchema(type=ScheduleSchemaType.MANUAL),
178+
),
179+
)
180+
pipeline_id = pipeline_response.data.id
181+
logger.info("Created pipeline %s", pipeline_id)
182+
183+
yield pipeline_id
184+
185+
try:
186+
pipelines.delete_pipeline(org_id, pipeline_id)
187+
except Exception:
188+
logger.exception("Failed to delete pipeline %s", pipeline_id)
Lines changed: 51 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,51 @@
1+
from typing import Any, Literal
2+
3+
import pytest
4+
from langchain_core.retrievers import BaseRetriever
5+
from langchain_tests.integration_tests import RetrieversIntegrationTests
6+
7+
from langchain_vectorize import VectorizeRetriever
8+
9+
10+
class TestVectorizeRetrieverIntegration(RetrieversIntegrationTests):
11+
@pytest.fixture(autouse=True)
12+
def setup(
13+
self,
14+
environment: Literal["prod", "dev", "local", "staging"],
15+
api_token: str,
16+
org_id: str,
17+
pipeline_id: str,
18+
) -> None:
19+
self._environment = environment
20+
self._api_token = api_token
21+
self._org_id = org_id
22+
self._pipeline_id = pipeline_id
23+
24+
@property
25+
def retriever_constructor(self) -> type[VectorizeRetriever]:
26+
return VectorizeRetriever
27+
28+
@property
29+
def retriever_constructor_params(self) -> dict[str, Any]:
30+
return {
31+
"environment": self._environment,
32+
"api_token": self._api_token,
33+
"organization": self._org_id,
34+
"pipeline_id": self._pipeline_id,
35+
}
36+
37+
@property
38+
def retriever_query_example(self) -> str:
39+
return "What are you?"
40+
41+
@pytest.mark.xfail(
42+
reason="VectorizeRetriever does not support k parameter in constructor"
43+
)
44+
def test_k_constructor_param(self) -> None:
45+
raise NotImplementedError
46+
47+
@pytest.mark.xfail(
48+
reason="VectorizeRetriever does not support k parameter in invoke"
49+
)
50+
def test_invoke_with_k_kwarg(self, retriever: BaseRetriever) -> None:
51+
raise NotImplementedError

0 commit comments

Comments
 (0)