|
| 1 | +/* Copyright 2015 The TensorFlow Authors. All Rights Reserved. |
| 2 | +
|
| 3 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | +you may not use this file except in compliance with the License. |
| 5 | +You may obtain a copy of the License at |
| 6 | +
|
| 7 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | +
|
| 9 | +Unless required by applicable law or agreed to in writing, software |
| 10 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | +See the License for the specific language governing permissions and |
| 13 | +limitations under the License. |
| 14 | +==============================================================================*/ |
| 15 | + |
| 16 | +#include "tensorflow/core/framework/op_kernel.h" |
| 17 | +#include "tensorflow/core/framework/tensor.h" |
| 18 | +#include "tensorflow/core/framework/tensor_shape.h" |
| 19 | +#include "tensorflow/core/framework/types.h" |
| 20 | +#include "tensorflow/core/lib/core/errors.h" |
| 21 | +#include "tensorflow/core/lib/strings/numbers.h" |
| 22 | +#include "tensorflow/core/lib/strings/str_util.h" |
| 23 | + |
| 24 | +namespace tensorflow { |
| 25 | + |
| 26 | +template <typename T, typename Tlabel> |
| 27 | +class DecodeLibsvmOp : public OpKernel { |
| 28 | + public: |
| 29 | + explicit DecodeLibsvmOp(OpKernelConstruction* ctx) : OpKernel(ctx) { |
| 30 | + OP_REQUIRES_OK(ctx, ctx->GetAttr("num_features", &num_features_)); |
| 31 | + OP_REQUIRES(ctx, (num_features_ >= 1), |
| 32 | + errors::InvalidArgument("Invalid number of features \"", |
| 33 | + num_features_, "\"")); |
| 34 | + } |
| 35 | + |
| 36 | + void Compute(OpKernelContext* ctx) override { |
| 37 | + const Tensor* input_tensor; |
| 38 | + OP_REQUIRES_OK(ctx, ctx->input("input", &input_tensor)); |
| 39 | + const auto& input_flat = input_tensor->flat<string>(); |
| 40 | + |
| 41 | + Tensor* label_tensor; |
| 42 | + OP_REQUIRES_OK( |
| 43 | + ctx, ctx->allocate_output(0, input_tensor->shape(), &label_tensor)); |
| 44 | + auto label = label_tensor->flat<Tlabel>(); |
| 45 | + |
| 46 | + std::vector<T> out_values; |
| 47 | + std::vector<std::pair<int64, int64>> out_indices; |
| 48 | + for (int i = 0; i < input_flat.size(); ++i) { |
| 49 | + StringPiece line(input_flat(i)); |
| 50 | + str_util::RemoveWhitespaceContext(&line); |
| 51 | + |
| 52 | + StringPiece piece; |
| 53 | + OP_REQUIRES(ctx, str_util::ConsumeNonWhitespace(&line, &piece), |
| 54 | + errors::InvalidArgument("No label found for input[", i, |
| 55 | + "]: \"", input_flat(i), "\"")); |
| 56 | + |
| 57 | + Tlabel label_value; |
| 58 | + OP_REQUIRES(ctx, |
| 59 | + strings::SafeStringToNumeric<Tlabel>(piece, &label_value), |
| 60 | + errors::InvalidArgument("Label format incorrect: ", piece)); |
| 61 | + |
| 62 | + label(i) = label_value; |
| 63 | + |
| 64 | + str_util::RemoveLeadingWhitespace(&line); |
| 65 | + while (str_util::ConsumeNonWhitespace(&line, &piece)) { |
| 66 | + size_t p = piece.find(':'); |
| 67 | + OP_REQUIRES(ctx, (p != StringPiece::npos), |
| 68 | + errors::InvalidArgument("Invalid feature \"", piece, "\"")); |
| 69 | + |
| 70 | + int64 feature_index; |
| 71 | + OP_REQUIRES( |
| 72 | + ctx, strings::safe_strto64(piece.substr(0, p), &feature_index), |
| 73 | + errors::InvalidArgument("Feature format incorrect: ", piece)); |
| 74 | + OP_REQUIRES(ctx, (feature_index >= 0), |
| 75 | + errors::InvalidArgument( |
| 76 | + "Feature index should be >= 0, got ", feature_index)); |
| 77 | + |
| 78 | + T feature_value; |
| 79 | + OP_REQUIRES( |
| 80 | + |
| 81 | + ctx, |
| 82 | + strings::SafeStringToNumeric<T>(piece.substr(p + 1), |
| 83 | + &feature_value), |
| 84 | + errors::InvalidArgument("Feature format incorrect: ", piece)); |
| 85 | + |
| 86 | + out_values.emplace_back(feature_value); |
| 87 | + out_indices.emplace_back(std::pair<int64, int64>(i, feature_index)); |
| 88 | + |
| 89 | + str_util::RemoveLeadingWhitespace(&line); |
| 90 | + } |
| 91 | + } |
| 92 | + |
| 93 | + Tensor* indices_tensor; |
| 94 | + OP_REQUIRES_OK(ctx, ctx->allocate_output( |
| 95 | + 1, |
| 96 | + TensorShape({static_cast<int64>(out_indices.size()), |
| 97 | + input_tensor->shape().dims() + 1}), |
| 98 | + &indices_tensor)); |
| 99 | + auto indices = indices_tensor->matrix<int64>(); |
| 100 | + // Translate flat index to shaped index like np.unravel_index |
| 101 | + // Calculate factors for each dimension |
| 102 | + std::vector<int64> factors(input_tensor->shape().dims()); |
| 103 | + factors[input_tensor->shape().dims() - 1] = 1; |
| 104 | + for (int j = input_tensor->shape().dims() - 2; j >= 0; j--) { |
| 105 | + factors[j] = factors[j + 1] * input_tensor->shape().dim_size(j + 1); |
| 106 | + } |
| 107 | + for (int i = 0; i < out_indices.size(); i++) { |
| 108 | + indices(i, 0) = out_indices[i].first; |
| 109 | + int64 value = out_indices[i].first; |
| 110 | + for (int j = 0; j < input_tensor->shape().dims(); j++) { |
| 111 | + indices(i, j) = value / factors[j]; |
| 112 | + value = value % factors[j]; |
| 113 | + } |
| 114 | + indices(i, input_tensor->shape().dims()) = out_indices[i].second; |
| 115 | + } |
| 116 | + |
| 117 | + Tensor* values_tensor; |
| 118 | + OP_REQUIRES_OK(ctx, |
| 119 | + ctx->allocate_output( |
| 120 | + 2, TensorShape({static_cast<int64>(out_values.size())}), |
| 121 | + &values_tensor)); |
| 122 | + auto values = values_tensor->vec<T>(); |
| 123 | + std::copy_n(out_values.begin(), out_values.size(), &values(0)); |
| 124 | + |
| 125 | + Tensor* shape_tensor; |
| 126 | + OP_REQUIRES_OK(ctx, ctx->allocate_output( |
| 127 | + 3, TensorShape({input_tensor->shape().dims() + 1}), |
| 128 | + &shape_tensor)); |
| 129 | + auto shape = shape_tensor->flat<int64>(); |
| 130 | + for (int i = 0; i < input_tensor->shape().dims(); i++) { |
| 131 | + shape(i) = input_tensor->shape().dim_size(i); |
| 132 | + } |
| 133 | + shape(input_tensor->shape().dims()) = num_features_; |
| 134 | + } |
| 135 | + |
| 136 | + private: |
| 137 | + int64 num_features_; |
| 138 | +}; |
| 139 | + |
| 140 | +#define REGISTER_KERNEL(type) \ |
| 141 | + REGISTER_KERNEL_BUILDER(Name("DecodeLibsvm") \ |
| 142 | + .Device(DEVICE_CPU) \ |
| 143 | + .TypeConstraint<type>("dtype") \ |
| 144 | + .TypeConstraint<int32>("label_dtype"), \ |
| 145 | + DecodeLibsvmOp<type, int32>); \ |
| 146 | + REGISTER_KERNEL_BUILDER(Name("DecodeLibsvm") \ |
| 147 | + .Device(DEVICE_CPU) \ |
| 148 | + .TypeConstraint<type>("dtype") \ |
| 149 | + .TypeConstraint<int64>("label_dtype"), \ |
| 150 | + DecodeLibsvmOp<type, int64>); \ |
| 151 | + REGISTER_KERNEL_BUILDER(Name("DecodeLibsvm") \ |
| 152 | + .Device(DEVICE_CPU) \ |
| 153 | + .TypeConstraint<type>("dtype") \ |
| 154 | + .TypeConstraint<float>("label_dtype"), \ |
| 155 | + DecodeLibsvmOp<type, float>); \ |
| 156 | + REGISTER_KERNEL_BUILDER(Name("DecodeLibsvm") \ |
| 157 | + .Device(DEVICE_CPU) \ |
| 158 | + .TypeConstraint<type>("dtype") \ |
| 159 | + .TypeConstraint<double>("label_dtype"), \ |
| 160 | + DecodeLibsvmOp<type, double>); |
| 161 | + |
| 162 | +REGISTER_KERNEL(float); |
| 163 | +REGISTER_KERNEL(double); |
| 164 | +REGISTER_KERNEL(int32); |
| 165 | +REGISTER_KERNEL(int64); |
| 166 | +#undef REGISTER_KERNEL |
| 167 | + |
| 168 | +} // namespace tensorflow |
0 commit comments