|
| 1 | +"""Tests for disk_offload module functions.""" |
| 2 | + |
| 3 | +import pytest |
| 4 | +import torch |
| 5 | + |
| 6 | +from circuit_tracer.transcoder.cross_layer_transcoder import CrossLayerTranscoder |
| 7 | +from circuit_tracer.transcoder.single_layer_transcoder import SingleLayerTranscoder |
| 8 | +from circuit_tracer.utils.disk_offload import ( |
| 9 | + cleanup_all_offload_files, |
| 10 | + cpu_offload_module, |
| 11 | + disk_offload_module, |
| 12 | + offload_modules, |
| 13 | +) |
| 14 | + |
| 15 | + |
| 16 | +@pytest.fixture |
| 17 | +def clt_module(): |
| 18 | + """Create a small CLT.""" |
| 19 | + return CrossLayerTranscoder( |
| 20 | + n_layers=2, |
| 21 | + d_transcoder=16, |
| 22 | + d_model=8, |
| 23 | + lazy_decoder=False, |
| 24 | + lazy_encoder=False, |
| 25 | + device=torch.device("cpu"), |
| 26 | + ) |
| 27 | + |
| 28 | + |
| 29 | +@pytest.fixture |
| 30 | +def plt_module(): |
| 31 | + """Create a small PLT.""" |
| 32 | + return SingleLayerTranscoder( |
| 33 | + d_model=8, |
| 34 | + d_transcoder=16, |
| 35 | + activation_function=torch.nn.functional.relu, |
| 36 | + layer_idx=0, |
| 37 | + lazy_decoder=False, |
| 38 | + lazy_encoder=False, |
| 39 | + device=torch.device("cpu"), |
| 40 | + ) |
| 41 | + |
| 42 | + |
| 43 | +@pytest.mark.parametrize("module_fixture", ["clt_module", "plt_module"]) |
| 44 | +@pytest.mark.parametrize("explicit_device", [True, False]) |
| 45 | +def test_disk_offload_module(module_fixture, explicit_device, request): |
| 46 | + """Test disk offload with CLT and PLT architectures.""" |
| 47 | + module = request.getfixturevalue(module_fixture) |
| 48 | + |
| 49 | + # Store original state |
| 50 | + orig_param = next(module.parameters()).data.clone() |
| 51 | + orig_device = next(module.parameters()).device |
| 52 | + |
| 53 | + # Offload to disk |
| 54 | + reload_handle = disk_offload_module(module) |
| 55 | + |
| 56 | + # Verify module is on meta device |
| 57 | + assert next(module.parameters()).device.type == "meta" |
| 58 | + |
| 59 | + # Reload with or without explicit device |
| 60 | + if explicit_device: |
| 61 | + device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
| 62 | + reload_handle(device=device) |
| 63 | + # Should be on the explicitly requested device |
| 64 | + assert next(module.parameters()).device.type == device.type |
| 65 | + assert torch.allclose(next(module.parameters()).data, orig_param.to(device)) |
| 66 | + else: |
| 67 | + reload_handle() |
| 68 | + # Should be restored to original device |
| 69 | + assert next(module.parameters()).device.type == orig_device.type |
| 70 | + assert torch.allclose(next(module.parameters()).data, orig_param) |
| 71 | + |
| 72 | + |
| 73 | +@pytest.mark.parametrize("module_fixture", ["clt_module", "plt_module"]) |
| 74 | +@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA not available") |
| 75 | +def test_cpu_offload_module_cuda(module_fixture, request): |
| 76 | + """Test CPU offload with CLT and PLT on CUDA.""" |
| 77 | + module = request.getfixturevalue(module_fixture) |
| 78 | + |
| 79 | + # Move to CUDA |
| 80 | + module.to("cuda") |
| 81 | + orig_param = next(module.parameters()).data.clone() |
| 82 | + |
| 83 | + # Offload to CPU |
| 84 | + reload_handle = cpu_offload_module(module) |
| 85 | + assert next(module.parameters()).device.type == "cpu" |
| 86 | + |
| 87 | + # Reload to CUDA |
| 88 | + reload_handle() |
| 89 | + assert next(module.parameters()).device.type == "cuda" |
| 90 | + assert torch.allclose(next(module.parameters()).data, orig_param.to("cuda")) |
| 91 | + |
| 92 | + |
| 93 | +def test_cpu_offload_module_cpu(clt_module): |
| 94 | + """Test CPU offload when already on CPU.""" |
| 95 | + orig_device = next(clt_module.parameters()).device |
| 96 | + |
| 97 | + reload_handle = cpu_offload_module(clt_module) |
| 98 | + assert next(clt_module.parameters()).device.type == "cpu" |
| 99 | + |
| 100 | + reload_handle() |
| 101 | + assert next(clt_module.parameters()).device == orig_device |
| 102 | + |
| 103 | + |
| 104 | +@pytest.mark.parametrize( |
| 105 | + "modules_factory,expected_count", |
| 106 | + [ |
| 107 | + # Single module |
| 108 | + ( |
| 109 | + lambda: CrossLayerTranscoder( |
| 110 | + n_layers=2, d_transcoder=16, d_model=8, lazy_decoder=False, lazy_encoder=False |
| 111 | + ), |
| 112 | + 1, |
| 113 | + ), |
| 114 | + # List of CLTs |
| 115 | + ( |
| 116 | + lambda: [ |
| 117 | + CrossLayerTranscoder( |
| 118 | + n_layers=2, d_transcoder=16, d_model=8, lazy_decoder=False, lazy_encoder=False |
| 119 | + ), |
| 120 | + CrossLayerTranscoder( |
| 121 | + n_layers=2, d_transcoder=16, d_model=8, lazy_decoder=False, lazy_encoder=False |
| 122 | + ), |
| 123 | + ], |
| 124 | + 2, |
| 125 | + ), |
| 126 | + # ModuleDict with CLTs |
| 127 | + ( |
| 128 | + lambda: torch.nn.ModuleDict( |
| 129 | + { |
| 130 | + "clt1": CrossLayerTranscoder( |
| 131 | + n_layers=2, |
| 132 | + d_transcoder=16, |
| 133 | + d_model=8, |
| 134 | + lazy_decoder=False, |
| 135 | + lazy_encoder=False, |
| 136 | + ), |
| 137 | + "clt2": CrossLayerTranscoder( |
| 138 | + n_layers=2, |
| 139 | + d_transcoder=16, |
| 140 | + d_model=8, |
| 141 | + lazy_decoder=False, |
| 142 | + lazy_encoder=False, |
| 143 | + ), |
| 144 | + } |
| 145 | + ), |
| 146 | + 2, |
| 147 | + ), |
| 148 | + ], |
| 149 | + ids=["single_clt", "list_clt", "moduledict_clt"], |
| 150 | +) |
| 151 | +@pytest.mark.parametrize("offload_type", ["cpu", "disk"]) |
| 152 | +def test_offload_modules(modules_factory, expected_count, offload_type): |
| 153 | + """Test offload_modules with various container types using CLT architecture.""" |
| 154 | + modules = modules_factory() |
| 155 | + expected_device = "cpu" if offload_type == "cpu" else "meta" |
| 156 | + |
| 157 | + handles = offload_modules(modules, offload_type=offload_type) |
| 158 | + |
| 159 | + # Verify handles |
| 160 | + assert isinstance(handles, list) |
| 161 | + assert len(handles) == expected_count |
| 162 | + for handle in handles: |
| 163 | + assert callable(handle) |
| 164 | + |
| 165 | + # Verify modules are offloaded |
| 166 | + if isinstance(modules, torch.nn.Module) and not isinstance( |
| 167 | + modules, (torch.nn.ModuleList, torch.nn.ModuleDict, torch.nn.Sequential) |
| 168 | + ): |
| 169 | + assert next(modules.parameters()).device.type == expected_device |
| 170 | + else: |
| 171 | + module_iter = modules.values() if isinstance(modules, torch.nn.ModuleDict) else modules |
| 172 | + for module in module_iter: |
| 173 | + assert next(module.parameters()).device.type == expected_device |
| 174 | + |
| 175 | + # Cleanup disk offloads |
| 176 | + if offload_type == "disk": |
| 177 | + for handle in handles: |
| 178 | + handle() |
| 179 | + |
| 180 | + |
| 181 | +def test_cleanup_offload_files(clt_module): |
| 182 | + """Test cleanup removes offload files.""" |
| 183 | + # Create some offload files |
| 184 | + modules = [clt_module] |
| 185 | + offload_modules(modules, offload_type="disk") |
| 186 | + |
| 187 | + # Cleanup |
| 188 | + n_removed = cleanup_all_offload_files() |
| 189 | + |
| 190 | + # Should have removed files |
| 191 | + assert n_removed >= 1 |
| 192 | + |
| 193 | + |
| 194 | +def test_cleanup_when_no_files(): |
| 195 | + """Test cleanup when no offload files exist.""" |
| 196 | + # First cleanup any existing files |
| 197 | + cleanup_all_offload_files() |
| 198 | + |
| 199 | + # Second cleanup should find nothing |
| 200 | + n_removed = cleanup_all_offload_files() |
| 201 | + assert n_removed == 0 |
0 commit comments