|
| 1 | +from pyspark.sql import SchemaRDD |
| 2 | +from pyspark.ml import _keyword_only_secret, _assert_keyword_only_args, _jvm |
| 3 | +from pyspark.ml.param import Param |
| 4 | + |
| 5 | + |
| 6 | +class LogisticRegression(object): |
| 7 | + """ |
| 8 | + Logistic regression. |
| 9 | + """ |
| 10 | + |
| 11 | + _java_class = "org.apache.spark.ml.classification.LogisticRegression" |
| 12 | + |
| 13 | + def __init__(self): |
| 14 | + self._java_obj = _jvm().org.apache.spark.ml.classification.LogisticRegression() |
| 15 | + self.paramMap = {} |
| 16 | + self.maxIter = Param(self, "maxIter", "max number of iterations", 100) |
| 17 | + self.regParam = Param(self, "regParam", "regularization constant", 0.1) |
| 18 | + |
| 19 | + def set(self, _keyword_only=_keyword_only_secret, |
| 20 | + maxIter=None, regParam=None): |
| 21 | + _assert_keyword_only_args() |
| 22 | + if maxIter is not None: |
| 23 | + self.paramMap[self.maxIter] = maxIter |
| 24 | + if regParam is not None: |
| 25 | + self.paramMap[self.regParam] = regParam |
| 26 | + return self |
| 27 | + |
| 28 | + # cannot chained |
| 29 | + def setMaxIter(self, value): |
| 30 | + self.paramMap[self.maxIter] = value |
| 31 | + return self |
| 32 | + |
| 33 | + def setRegParam(self, value): |
| 34 | + self.paramMap[self.regParam] = value |
| 35 | + return self |
| 36 | + |
| 37 | + def getMaxIter(self): |
| 38 | + if self.maxIter in self.paramMap: |
| 39 | + return self.paramMap[self.maxIter] |
| 40 | + else: |
| 41 | + return self.maxIter.defaultValue |
| 42 | + |
| 43 | + def getRegParam(self): |
| 44 | + if self.regParam in self.paramMap: |
| 45 | + return self.paramMap[self.regParam] |
| 46 | + else: |
| 47 | + return self.regParam.defaultValue |
| 48 | + |
| 49 | + def fit(self, dataset): |
| 50 | + java_model = self._java_obj.fit(dataset._jschema_rdd, _jvm().org.apache.spark.ml.param.ParamMap()) |
| 51 | + return LogisticRegressionModel(java_model) |
| 52 | + |
| 53 | + |
| 54 | +class LogisticRegressionModel(object): |
| 55 | + """ |
| 56 | + Model fitted by LogisticRegression. |
| 57 | + """ |
| 58 | + |
| 59 | + def __init__(self, _java_model): |
| 60 | + self._java_model = _java_model |
| 61 | + |
| 62 | + def transform(self, dataset): |
| 63 | + return SchemaRDD(self._java_model.transform(dataset._jschema_rdd, _jvm().org.apache.spark.ml.param.ParamMap()), dataset.sql_ctx) |
| 64 | + |
| 65 | +lr = LogisticRegression() |
| 66 | + |
| 67 | +lr.set(maxIter=10, regParam=0.1) |
0 commit comments