|
| 1 | +from typing import Callable, Tuple |
| 2 | +import torch |
| 3 | +from torch import Tensor |
| 4 | +from torch.autograd import gradcheck |
| 5 | +from torchaudio_unittest.common_utils import ( |
| 6 | + TestBaseMixin, |
| 7 | +) |
| 8 | +from torchaudio.prototype.rnnt_loss import RNNTLoss, rnnt_loss |
| 9 | +from parameterized import parameterized |
| 10 | +from .utils import ( |
| 11 | + numpy_to_torch, |
| 12 | + get_B1_T10_U3_D4_data, |
| 13 | + get_B1_T10_U3_D4_data, |
| 14 | + get_numpy_data_B2_T4_U3_D3, |
| 15 | + get_numpy_data_B1_T2_U3_D5 |
| 16 | +) |
| 17 | +from .numpy_transducer import NumpyTransducerLoss |
| 18 | + |
| 19 | + |
| 20 | +class Autograd(TestBaseMixin): |
| 21 | + @staticmethod |
| 22 | + def get_data(data_func, device): |
| 23 | + data_np = data_func() |
| 24 | + if type(data_np) == tuple: |
| 25 | + print("reference gradient") |
| 26 | + print(data_np[-1]) |
| 27 | + data_np = data_np[0] |
| 28 | + data = numpy_to_torch( |
| 29 | + data=data_np, device=device, requires_grad=True |
| 30 | + ) |
| 31 | + return data |
| 32 | + |
| 33 | + def assert_grad( |
| 34 | + self, |
| 35 | + loss: Callable[..., Tensor], |
| 36 | + inputs: Tuple[torch.Tensor], |
| 37 | + *, |
| 38 | + enable_all_grad: bool = True, |
| 39 | + ): |
| 40 | + # inputs_ = [] |
| 41 | + # for i in inputs: |
| 42 | + # if torch.is_tensor(i): |
| 43 | + # i = i.to(dtype=self.dtype, device=self.device) |
| 44 | + # if enable_all_grad: |
| 45 | + # i.requires_grad = True |
| 46 | + # inputs_.append(i) |
| 47 | + assert gradcheck(loss, inputs, eps=1e-03, atol=1e-02, rtol=1e-02, nondet_tol=0.) |
| 48 | + |
| 49 | + @parameterized.expand([ |
| 50 | + # (get_B1_T10_U3_D4_data, ), |
| 51 | + (get_numpy_data_B2_T4_U3_D3, ), |
| 52 | + (get_numpy_data_B1_T2_U3_D5, ), |
| 53 | + ]) |
| 54 | + def test_RNNTLoss_gradcheck(self, data_func): |
| 55 | + data = self.get_data(data_func, self.device) |
| 56 | + inputs = ( |
| 57 | + data["logits"].to(self.dtype), |
| 58 | + data["targets"], |
| 59 | + data["logit_lengths"], |
| 60 | + data["target_lengths"], |
| 61 | + ) |
| 62 | + loss = RNNTLoss(blank=data["blank"]) |
| 63 | + |
| 64 | + self.assert_grad(loss, inputs, enable_all_grad=False) |
| 65 | + |
| 66 | + @parameterized.expand([ |
| 67 | + # (get_B1_T10_U3_D4_data, ), |
| 68 | + (get_numpy_data_B2_T4_U3_D3, ), |
| 69 | + (get_numpy_data_B1_T2_U3_D5, ), |
| 70 | + ]) |
| 71 | + def test_np_transducer_gradcheck(self, data_func): |
| 72 | + data = self.get_data(data_func, self.device) |
| 73 | + inputs = ( |
| 74 | + data["logits"].to(self.dtype), |
| 75 | + data["logit_lengths"], |
| 76 | + data["target_lengths"], |
| 77 | + data["targets"], |
| 78 | + ) |
| 79 | + loss = NumpyTransducerLoss(blank=data["blank"]) |
| 80 | + |
| 81 | + self.assert_grad(loss, inputs, enable_all_grad=False) |
0 commit comments