diff --git a/doc/terminology.rst b/doc/terminology.rst index 138a99740fe..18ede57a4c6 100644 --- a/doc/terminology.rst +++ b/doc/terminology.rst @@ -15,7 +15,7 @@ Terminology ---- -**Variable:** A `NetCDF-like variable `_ consisting of dimensions, data, and attributes which describe a single array. The main functional difference between variables and numpy arrays is that numerical operations on variables implement array broadcasting by dimension name. Each ``DataArray`` has an underlying variable that can be accessed via ``arr.variable``. However, a variable is not fully described outside of either a ``Dataset`` or a ``DataArray``. +**Variable:** A `NetCDF-like variable `_ consisting of dimensions, data, and attributes which describe a single array. The main functional difference between variables and numpy arrays is that numerical operations on variables implement array broadcasting by dimension name. Each ``DataArray`` has an underlying variable that can be accessed via ``arr.variable``. However, a variable is not fully described outside of either a ``Dataset`` or a ``DataArray``. .. note:: @@ -39,4 +39,4 @@ Terminology ---- -**Index:** An *index* is a data structure optimized for efficient selecting and slicing of an associated array. Xarray creates indexes for dimension coordinates so that operations along dimensions are fast, while non-dimension coordinates are not indexed. Under the hood, indexes are implemented as :py:class:`pandas.Index` objects. The index associated with dimension name ``x`` can be retrieved by ``arr.indexes[x]``. By construction, ``len(arr.dims) == len(arr.indexes)`` \ No newline at end of file +**Index:** An *index* is a data structure optimized for efficient selecting and slicing of an associated array. Xarray creates indexes for dimension coordinates so that operations along dimensions are fast, while non-dimension coordinates are not indexed. Under the hood, indexes are implemented as :py:class:`pandas.Index` objects. The index associated with dimension name ``x`` can be retrieved by ``arr.indexes[x]``. By construction, ``len(arr.dims) == len(arr.indexes)``