@@ -3900,26 +3900,26 @@ def interp(
3900
3900
determine which interpolant is used:
3901
3901
3902
3902
1. **Interpolation along one dimension of 1D data (`method='linear'`)**
3903
- - Uses :py:class:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`.
3903
+ - Uses :py:class:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`.
3904
3904
3905
3905
2. **Interpolation along one dimension of N-dimensional data (N ≥ 1)**
3906
- - Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"}
3907
- use :py:class:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:class:`numpy.interp`
3908
- (as in the case of `method='linear'` for 1D data).
3909
- - If `method='polynomial'`, the `order` keyword argument must also be provided. In this case,
3910
- :py:class:`scipy.interpolate.interp1d` is called with `kind=order`.
3906
+ - Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"}
3907
+ use :py:class:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:class:`numpy.interp`
3908
+ (as in the case of `method='linear'` for 1D data).
3909
+ - If `method='polynomial'`, the `order` keyword argument must also be provided. In this case,
3910
+ :py:class:`scipy.interpolate.interp1d` is called with `kind=order`.
3911
3911
3912
3912
3. **Special interpolants for interpolation along one dimension of N-dimensional data (N ≥ 1)**
3913
- - Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used:
3914
- - `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator`
3915
- - `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator`
3916
- - `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator`
3917
- - `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator`
3918
- (`makima` is handled by passing `makima` to `method`).
3913
+ - Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used:
3914
+ - `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator`
3915
+ - `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator`
3916
+ - `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator`
3917
+ - `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator`
3918
+ (`makima` is handled by passing `makima` to `method`).
3919
3919
3920
3920
4. **Interpolation along multiple dimensions of multi-dimensional data**
3921
- - Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear",
3922
- "cubic", "quintic", "pchip"}.
3921
+ - Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear",
3922
+ "cubic", "quintic", "pchip"}.
3923
3923
3924
3924
Out-of-range values are filled with NaN, unless specified otherwise via `kwargs` to the numpy/scipy interpolant.
3925
3925
@@ -4202,26 +4202,26 @@ def interp_like(
4202
4202
determine which interpolant is used:
4203
4203
4204
4204
1. **Interpolation along one dimension of 1D data (`method='linear'`)**
4205
- - Uses :py:class:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`.
4205
+ - Uses :py:class:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`.
4206
4206
4207
4207
2. **Interpolation along one dimension of N-dimensional data (N ≥ 1)**
4208
- - Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"}
4209
- use :py:class:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:class:`numpy.interp`
4210
- (as in the case of `method='linear'` for 1D data).
4211
- - If `method='polynomial'`, the `order` keyword argument must also be provided. In this case,
4212
- :py:class:`scipy.interpolate.interp1d` is called with `kind=order`.
4208
+ - Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"}
4209
+ use :py:class:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:class:`numpy.interp`
4210
+ (as in the case of `method='linear'` for 1D data).
4211
+ - If `method='polynomial'`, the `order` keyword argument must also be provided. In this case,
4212
+ :py:class:`scipy.interpolate.interp1d` is called with `kind=order`.
4213
4213
4214
4214
3. **Special interpolants for interpolation along one dimension of N-dimensional data (N ≥ 1)**
4215
- - Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used:
4216
- - `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator`
4217
- - `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator`
4218
- - `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator`
4219
- - `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator`
4220
- (`makima` is handled by passing `makima` to `method`).
4215
+ - Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used:
4216
+ - `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator`
4217
+ - `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator`
4218
+ - `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator`
4219
+ - `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator`
4220
+ (`makima` is handled by passing `makima` to `method`).
4221
4221
4222
4222
4. **Interpolation along multiple dimensions of multi-dimensional data**
4223
- - Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear",
4224
- "cubic", "quintic", "pchip"}.
4223
+ - Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear",
4224
+ "cubic", "quintic", "pchip"}.
4225
4225
4226
4226
Out-of-range values are filled with NaN, unless specified otherwise via `kwargs` to the numpy/scipy interpolant.
4227
4227
0 commit comments