Skip to content

Commit ba0c4a9

Browse files
committed
Updated dependencies, remove old Int import
1 parent c3ec864 commit ba0c4a9

File tree

2 files changed

+17
-23
lines changed

2 files changed

+17
-23
lines changed

bower.json

Lines changed: 1 addition & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -24,11 +24,6 @@
2424
"package.json"
2525
],
2626
"dependencies": {
27-
"purescript-maybe": "^0.3.0",
28-
"purescript-arrays": "^0.4.0",
29-
"purescript-foldable-traversable": "^0.4.0",
30-
"purescript-maps": "^0.4.0",
31-
"purescript-sets": "^0.4.0",
32-
"purescript-lists": "^0.7.0"
27+
"purescript-sets": "^0.5.0"
3328
}
3429
}

src/Data/Graph.purs

Lines changed: 16 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -4,19 +4,18 @@ module Data.Graph (
44
Edge(..),
55
Graph(..),
66
SCC(..),
7-
7+
88
vertices,
99

1010
scc,
1111
scc',
12-
12+
1313
topSort,
1414
topSort'
1515
) where
1616

1717
import Prelude
1818

19-
import Data.Int
2019
import Data.Maybe
2120
import Data.List
2221
import Data.Foldable
@@ -37,7 +36,7 @@ data Edge k = Edge k k
3736
-- | Edges refer to vertices using keys of type `k`.
3837
data Graph k v = Graph (List v) (List (Edge k))
3938

40-
type Index = Int
39+
type Index = Int
4140

4241
-- | A strongly-connected component of a graph.
4342
-- |
@@ -47,7 +46,7 @@ type Index = Int
4746
data SCC v = AcyclicSCC v | CyclicSCC (List v)
4847

4948
instance showSCC :: (Show v) => Show (SCC v) where
50-
show (AcyclicSCC v) = "AcyclicSCC (" ++ show v ++ ")"
49+
show (AcyclicSCC v) = "AcyclicSCC (" ++ show v ++ ")"
5150
show (CyclicSCC vs) = "CyclicSCC " ++ show vs
5251

5352
instance eqSCC :: (Eq v) => Eq (SCC v) where
@@ -65,26 +64,26 @@ scc :: forall v. (Eq v, Ord v) => Graph v v -> List (SCC v)
6564
scc = scc' id id
6665

6766
-- | Compute the strongly connected components of a graph.
68-
-- |
67+
-- |
6968
-- | This function is a slight generalization of `scc` which allows key and value types
7069
-- | to differ.
7170
scc' :: forall k v. (Eq k, Ord k) => (v -> k) -> (k -> v) -> Graph k v -> List (SCC v)
7271
scc' makeKey makeVert (Graph vs es) = runPure (runST (do
73-
index <- newSTRef zero
72+
index <- newSTRef zero
7473
path <- newSTRef Nil
7574
indexMap <- newSTRef M.empty
7675
lowlinkMap <- newSTRef M.empty
7776
components <- newSTRef Nil
7877

79-
(let
78+
(let
8079
indexOf v = indexOfKey (makeKey v)
81-
80+
8281
indexOfKey k = do
8382
m <- readSTRef indexMap
8483
return $ M.lookup k m
85-
84+
8685
lowlinkOf v = lowlinkOfKey (makeKey v)
87-
86+
8887
lowlinkOfKey k = do
8988
m <- readSTRef lowlinkMap
9089
return $ M.lookup k m
@@ -97,7 +96,7 @@ scc' makeKey makeVert (Graph vs es) = runPure (runST (do
9796

9897
strongConnect k = do
9998
let v = makeVert k
100-
99+
101100
i <- readSTRef index
102101

103102
modifySTRef indexMap $ M.insert k i
@@ -123,23 +122,23 @@ scc' makeKey makeVert (Graph vs es) = runPure (runST (do
123122
modifySTRef lowlinkMap $ M.alter (maybeMin index) k
124123

125124
vIndex <- indexOfKey k
126-
vLowlink <- lowlinkOfKey k
125+
vLowlink <- lowlinkOfKey k
127126

128127
when (vIndex == vLowlink) $ do
129128
currentPath <- readSTRef path
130129
let newPath = popUntil makeKey v currentPath Nil
131130
modifySTRef components $ flip (++) (singleton (makeComponent newPath.component))
132131
writeSTRef path newPath.path
133132
return unit
134-
133+
135134
makeComponent (Cons v Nil) | not (isCycle (makeKey v)) = AcyclicSCC v
136135
makeComponent vs = CyclicSCC vs
137-
136+
138137
isCycle k = any (\(Edge k1 k2) -> k1 == k && k2 == k) es
139138
in go vs)))
140139

141140
popUntil :: forall k v. (Eq k) => (v -> k) -> v -> List v -> List v -> { path :: List v, component :: List v }
142-
popUntil _ _ Nil popped = { path: Nil, component: popped }
141+
popUntil _ _ Nil popped = { path: Nil, component: popped }
143142
popUntil makeKey v (Cons w path) popped | makeKey v == makeKey w = { path: path, component: Cons w popped }
144143
popUntil makeKey v (Cons w ws) popped = popUntil makeKey v ws (Cons w popped)
145144

@@ -154,7 +153,7 @@ topSort :: forall v. (Eq v, Ord v) => Graph v v -> List v
154153
topSort = topSort' id id
155154

156155
-- | Topologically sort the vertices of a graph
157-
-- |
156+
-- |
158157
-- | This function is a slight generalization of `scc` which allows key and value types
159158
-- | to differ.
160159
topSort' :: forall k v. (Eq k, Ord k) => (v -> k) -> (k -> v) -> Graph k v -> List v

0 commit comments

Comments
 (0)