|
| 1 | +# SPDX-License-Identifier: Apache-2.0 |
| 2 | + |
| 3 | + |
| 4 | +""" |
| 5 | +A simple tool to try optimizations on onnx graphs. |
| 6 | +This makes use of the fact that tensorflow-onnx internal graph representation is onnx |
| 7 | +so all graph, rewrite, matching and utility libaries do work which makes things easy. |
| 8 | +""" |
| 9 | + |
| 10 | +# pylint: disable=invalid-name,missing-docstring, unused-argument |
| 11 | + |
| 12 | +import argparse |
| 13 | +import logging |
| 14 | + |
| 15 | +import onnx |
| 16 | +from onnx import helper |
| 17 | + |
| 18 | +from tf2onnx.graph import GraphUtil |
| 19 | +from tf2onnx import logging, optimizer |
| 20 | + |
| 21 | + |
| 22 | +logging.basicConfig(level=logging.INFO) |
| 23 | +logger = logging.getLogger("onnx-optimize") |
| 24 | + |
| 25 | + |
| 26 | +def get_args(): |
| 27 | + """Parse commandline.""" |
| 28 | + parser = argparse.ArgumentParser() |
| 29 | + parser.add_argument("--input", required=True, help="onnx input model file") |
| 30 | + parser.add_argument("--output", help="output model file") |
| 31 | + args = parser.parse_args() |
| 32 | + return args |
| 33 | + |
| 34 | + |
| 35 | +def load_graph(fname): |
| 36 | + model_proto = onnx.ModelProto() |
| 37 | + with open(fname, "rb") as f: |
| 38 | + data = f.read() |
| 39 | + model_proto.ParseFromString(data) |
| 40 | + g = GraphUtil.create_graph_from_onnx_model(model_proto) |
| 41 | + return g, model_proto |
| 42 | + |
| 43 | + |
| 44 | +def main(): |
| 45 | + args = get_args() |
| 46 | + |
| 47 | + g, org_model_proto = load_graph(args.input) |
| 48 | + |
| 49 | + g = optimizer.optimize_graph(g) |
| 50 | + |
| 51 | + onnx_graph = g.make_graph(org_model_proto.graph.doc_string + " (+tf2onnx/onnx-optimize)") |
| 52 | + |
| 53 | + kwargs = {"producer_name": org_model_proto.producer_name, |
| 54 | + "producer_version": org_model_proto.producer_version, |
| 55 | + "opset_imports": org_model_proto.opset_import, |
| 56 | + "ir_version": org_model_proto.ir_version} |
| 57 | + |
| 58 | + model_proto = helper.make_model(onnx_graph, **kwargs) |
| 59 | + |
| 60 | + # write onnx graph |
| 61 | + if args.output: |
| 62 | + with open(args.output, "wb") as f: |
| 63 | + f.write(model_proto.SerializeToString()) |
| 64 | + |
| 65 | + |
| 66 | +if __name__ == "__main__": |
| 67 | + main() |
0 commit comments