@@ -192,41 +192,41 @@ The benchmarking results are given in ms for an i7-7560U running at 2.40GHz:
192
192
``` text
193
193
function ufunc numpy numba weave
194
194
-----------------------------------------------------------------
195
- sum 29.738 1.454 0.901 1.176
196
- prod 29.552 29.575 0.905 1.162
197
- amin 29.944 29.850 0.979 1.169
198
- amax 29.943 29.956 1.009 1.201
199
- len 28.865 1.250 0.748 1.053
200
- all 34.013 3.962 0.995 1.195
201
- any 32.913 6.690 1.023 1.189
202
- anynan 28.956 2.551 0.961 1.210
203
- allnan 29.966 5.943 0.924 1.204
204
- mean ---- 2.302 0.843 1.030
205
- std ---- 5.587 1.015 1.210
206
- var ---- 5.635 1.004 1.205
207
- first ---- 1.586 0.977 0.994
208
- last ---- 1.335 0.665 0.887
209
- argmax ---- 29.734 0.903 ----
210
- argmin ---- 33.152 0.868 ----
211
- nansum ---- 4.576 1.633 1.176
212
- nanprod ---- 26.832 1.618 1.186
213
- nanmin ---- 27.198 1.852 1.211
214
- nanmax ---- 27.194 1.786 1.252
215
- nanlen ---- 4.602 1.611 1.948
216
- nanall ---- 8.512 1.706 1.237
217
- nanany ---- 9.492 1.719 1.245
218
- nanmean ---- 5.089 1.669 1.282
219
- nanvar ---- 8.783 1.815 1.485
220
- nanstd ---- 8.771 1.805 1.482
221
- nanfirst ---- 4.899 1.851 1.095
222
- nanlast ---- 4.834 1.625 1.051
223
- cumsum ---- 132.572 1.161 ----
224
- cumprod ---- ---- 1.179 ----
225
- cummax ---- ---- 1.146 ----
226
- cummin ---- ---- 1.114 ----
227
- arbitrary ---- 217.585 72.019 ----
228
- sort ---- 237.604 ---- ----
229
- Linux(x86_64), Python 2.7.12, Numpy 1.15.2 , Numba 0.40.1
195
+ sum 28.763 1.477 0.917 1.167
196
+ prod 29.165 29.162 0.919 1.170
197
+ amin 33.020 33.134 0.979 1.181
198
+ amax 33.150 33.156 1.049 1.216
199
+ len 28.594 1.260 0.755 1.023
200
+ all 33.493 3.883 0.995 1.214
201
+ any 33.308 6.776 1.003 1.216
202
+ anynan 28.938 2.472 0.930 1.182
203
+ allnan 29.391 5.929 0.931 1.201
204
+ mean ---- 2.100 0.972 1.216
205
+ std ---- 6.600 1.127 1.370
206
+ var ---- 6.684 1.109 1.388
207
+ first ---- 2.140 1.067 1.188
208
+ last ---- 1.545 0.818 1.086
209
+ argmax ---- 33.860 1.016 ----
210
+ argmin ---- 36.690 0.981 ----
211
+ nansum ---- 4.944 1.722 1.342
212
+ nanprod ---- 27.286 1.726 1.369
213
+ nanmin ---- 30.238 1.895 1.359
214
+ nanmax ---- 30.337 1.939 1.446
215
+ nanlen ---- 4.820 1.707 1.312
216
+ nanall ---- 9.148 1.786 1.380
217
+ nanany ---- 10.157 1.830 1.392
218
+ nanmean ---- 5.775 1.758 1.440
219
+ nanvar ---- 10.090 1.922 1.651
220
+ nanstd ---- 10.308 1.884 1.664
221
+ nanfirst ---- 5.481 1.945 1.295
222
+ nanlast ---- 4.992 1.735 1.199
223
+ cumsum ---- 144.807 1.455 ----
224
+ cumprod ---- ---- 1.371 ----
225
+ cummax ---- ---- 1.441 ----
226
+ cummin ---- ---- 1.340 ----
227
+ arbitrary ---- 237.252 79.717 ----
228
+ sort ---- 261.951 ---- ----
229
+ Linux(x86_64), Python 2.7.12, Numpy 1.16.0 , Numba 0.42.0, Weave 0.17.0
230
230
231
231
```
232
232
0 commit comments