|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# All rights reserved. |
| 3 | +# |
| 4 | +# This source code is licensed under the BSD-style license found in the |
| 5 | +# LICENSE file in the root directory of this source tree. |
| 6 | + |
| 7 | +import math |
| 8 | + |
| 9 | +import pytest |
| 10 | +import torch |
| 11 | + |
| 12 | +from tests.test_utils import assert_expected |
| 13 | + |
| 14 | +from torchtune.models.clip._position_embeddings import ( |
| 15 | + TiledTokenPositionalEmbedding, |
| 16 | + TilePositionalEmbedding, |
| 17 | +) |
| 18 | + |
| 19 | +# generated comparing vs fairinternal/internal-llama-models |
| 20 | +tile_pos_emb_test_cases = [ |
| 21 | + { |
| 22 | + "tgt_max_num_tiles": 1, |
| 23 | + "input_tensor": torch.tensor( |
| 24 | + [[[[0.0, 1.0]], [[2.0, 3.0]]], [[[4.0, 5.0]], [[6.0, 7.0]]]] |
| 25 | + ), |
| 26 | + "expected_output": torch.tensor([[[[0.0, 1.0]]]]), |
| 27 | + }, |
| 28 | + { |
| 29 | + "tgt_max_num_tiles": 3, |
| 30 | + "input_tensor": torch.tensor([[[[0.0]]]]), |
| 31 | + "expected_output": torch.tensor( |
| 32 | + [ |
| 33 | + [[[0.0]], [[0.0]], [[0.0]]], |
| 34 | + [[[0.0]], [[0.0]], [[0.0]]], |
| 35 | + [[[0.0]], [[0.0]], [[0.0]]], |
| 36 | + ] |
| 37 | + ), |
| 38 | + }, |
| 39 | + { |
| 40 | + "tgt_max_num_tiles": 2, |
| 41 | + "input_tensor": torch.tensor( |
| 42 | + [ |
| 43 | + [[[0.0, 1.0]], [[2.0, 3.0]], [[4.0, 5.0]]], |
| 44 | + [[[6.0, 7.0]], [[8.0, 9.0]], [[10.0, 11.0]]], |
| 45 | + [[[12.0, 13.0]], [[14.0, 15.0]], [[16.0, 17.0]]], |
| 46 | + ] |
| 47 | + ), |
| 48 | + "expected_output": torch.tensor( |
| 49 | + [[[[0.0, 1.0]], [[4.0, 5.0]]], [[[12.0, 13.0]], [[16.0, 17.0]]]] |
| 50 | + ), |
| 51 | + }, |
| 52 | +] |
| 53 | + |
| 54 | +local_pos_emb_test_cases = [ |
| 55 | + { |
| 56 | + "tgt_patch_grid_size": 2, |
| 57 | + "expected_shape": torch.Size([5, 2]), |
| 58 | + "input_tensor": torch.tensor( |
| 59 | + [[0.0, 1.0], [2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]] |
| 60 | + ), |
| 61 | + "expected_output": torch.tensor( |
| 62 | + [[0.0, 1.0], [2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]] |
| 63 | + ), |
| 64 | + }, |
| 65 | + { |
| 66 | + "tgt_patch_grid_size": 1, |
| 67 | + "expected_shape": torch.Size([2, 1]), |
| 68 | + "input_tensor": torch.tensor([[0.0], [1.0], [2.0], [3.0], [4.0]]), |
| 69 | + "expected_output": torch.tensor([[0.0], [1.0]]), |
| 70 | + }, |
| 71 | + { |
| 72 | + "tgt_patch_grid_size": 2, |
| 73 | + "expected_shape": torch.Size([5, 2]), |
| 74 | + "input_tensor": torch.tensor([[0.0, 1.0], [2.0, 3.0]]), |
| 75 | + "expected_output": torch.tensor( |
| 76 | + [[0.0, 1.0], [2.0, 3.0], [2.0, 3.0], [2.0, 3.0], [2.0, 3.0]] |
| 77 | + ), |
| 78 | + }, |
| 79 | +] |
| 80 | + |
| 81 | +global_pos_emb_test_cases = [ |
| 82 | + { |
| 83 | + "tgt_max_num_tiles": 1, |
| 84 | + "tgt_patch_grid_size": 2, |
| 85 | + "input_tensor": torch.tensor( |
| 86 | + [ |
| 87 | + [ |
| 88 | + [[0.0, 1.0], [2.0, 3.0], [4.0, 5.0], [6.0, 7.0], [8.0, 9.0]], |
| 89 | + [ |
| 90 | + [10.0, 11.0], |
| 91 | + [12.0, 13.0], |
| 92 | + [14.0, 15.0], |
| 93 | + [16.0, 17.0], |
| 94 | + [18.0, 19.0], |
| 95 | + ], |
| 96 | + ], |
| 97 | + [ |
| 98 | + [ |
| 99 | + [20.0, 21.0], |
| 100 | + [22.0, 23.0], |
| 101 | + [24.0, 25.0], |
| 102 | + [26.0, 27.0], |
| 103 | + [28.0, 29.0], |
| 104 | + ], |
| 105 | + [ |
| 106 | + [30.0, 31.0], |
| 107 | + [32.0, 33.0], |
| 108 | + [34.0, 35.0], |
| 109 | + [36.0, 37.0], |
| 110 | + [38.0, 39.0], |
| 111 | + ], |
| 112 | + ], |
| 113 | + ] |
| 114 | + ), |
| 115 | + "expected_output": torch.tensor( |
| 116 | + [[[[0.0, 1.0], [2.0, 3.0], [14.0, 15.0], [26.0, 27.0], [38.0, 39.0]]]] |
| 117 | + ), |
| 118 | + }, |
| 119 | + { |
| 120 | + "tgt_max_num_tiles": 3, |
| 121 | + "tgt_patch_grid_size": 1, |
| 122 | + "input_tensor": torch.tensor([[[[0.0], [1.0], [2.0], [3.0], [4.0]]]]), |
| 123 | + "expected_output": torch.tensor( |
| 124 | + [ |
| 125 | + [[[0.0000], [1.0000]], [[0.0000], [1.5000]], [[0.0000], [2.0000]]], |
| 126 | + [[[0.0000], [2.0000]], [[0.0000], [2.5000]], [[0.0000], [3.0000]]], |
| 127 | + [[[0.0000], [3.0000]], [[0.0000], [3.5000]], [[0.0000], [4.0000]]], |
| 128 | + ] |
| 129 | + ), |
| 130 | + }, |
| 131 | + { |
| 132 | + "tgt_max_num_tiles": 2, |
| 133 | + "tgt_patch_grid_size": 2, |
| 134 | + "input_tensor": torch.tensor( |
| 135 | + [ |
| 136 | + [ |
| 137 | + [[0.0, 1.0], [2.0, 3.0]], |
| 138 | + [[4.0, 5.0], [6.0, 7.0]], |
| 139 | + [[8.0, 9.0], [10.0, 11.0]], |
| 140 | + ], |
| 141 | + [ |
| 142 | + [[12.0, 13.0], [14.0, 15.0]], |
| 143 | + [[16.0, 17.0], [18.0, 19.0]], |
| 144 | + [[20.0, 21.0], [22.0, 23.0]], |
| 145 | + ], |
| 146 | + [ |
| 147 | + [[24.0, 25.0], [26.0, 27.0]], |
| 148 | + [[28.0, 29.0], [30.0, 31.0]], |
| 149 | + [[32.0, 33.0], [34.0, 35.0]], |
| 150 | + ], |
| 151 | + ] |
| 152 | + ), |
| 153 | + "expected_output": torch.tensor( |
| 154 | + [ |
| 155 | + [ |
| 156 | + [ |
| 157 | + [0.0000, 1.0000], |
| 158 | + [2.0000, 3.0000], |
| 159 | + [4.6667, 5.6667], |
| 160 | + [10.0000, 11.0000], |
| 161 | + [12.6667, 13.6667], |
| 162 | + ], |
| 163 | + [ |
| 164 | + [8.0000, 9.0000], |
| 165 | + [7.3333, 8.3333], |
| 166 | + [10.0000, 11.0000], |
| 167 | + [15.3333, 16.3333], |
| 168 | + [18.0000, 19.0000], |
| 169 | + ], |
| 170 | + ], |
| 171 | + [ |
| 172 | + [ |
| 173 | + [24.0000, 25.0000], |
| 174 | + [18.0000, 19.0000], |
| 175 | + [20.6667, 21.6667], |
| 176 | + [26.0000, 27.0000], |
| 177 | + [28.6667, 29.6667], |
| 178 | + ], |
| 179 | + [ |
| 180 | + [32.0000, 33.0000], |
| 181 | + [23.3333, 24.3333], |
| 182 | + [26.0000, 27.0000], |
| 183 | + [31.3333, 32.3333], |
| 184 | + [34.0000, 35.0000], |
| 185 | + ], |
| 186 | + ], |
| 187 | + ] |
| 188 | + ), |
| 189 | + }, |
| 190 | +] |
| 191 | + |
| 192 | + |
| 193 | +class TestPositionalEmbeddingsInterpolation: |
| 194 | + @pytest.mark.parametrize("params", tile_pos_emb_test_cases) |
| 195 | + def test_tile_resize_position_embedding(self, params): |
| 196 | + tgt_max_num_tiles = params["tgt_max_num_tiles"] |
| 197 | + expected_output = params["expected_output"] |
| 198 | + embedding = params["input_tensor"] |
| 199 | + |
| 200 | + resized_pos_embed = TilePositionalEmbedding._resize_position_embedding( |
| 201 | + embedding, tgt_max_num_tiles |
| 202 | + ) |
| 203 | + |
| 204 | + assert_expected(resized_pos_embed, expected_output, atol=1e-3, rtol=1e-4) |
| 205 | + |
| 206 | + @pytest.mark.parametrize("params", local_pos_emb_test_cases) |
| 207 | + def test_resize_local_position_embedding(self, params): |
| 208 | + input_tensor = params["input_tensor"] |
| 209 | + tgt_patch_grid_size = params["tgt_patch_grid_size"] |
| 210 | + expected_output = params["expected_output"] |
| 211 | + |
| 212 | + resized_pos_embed = ( |
| 213 | + TiledTokenPositionalEmbedding._resize_local_position_embedding( |
| 214 | + input_tensor, tgt_patch_grid_size |
| 215 | + ) |
| 216 | + ) |
| 217 | + |
| 218 | + assert_expected(resized_pos_embed, expected_output, atol=1e-3, rtol=1e-4) |
| 219 | + |
| 220 | + @pytest.mark.parametrize("params", global_pos_emb_test_cases) |
| 221 | + def test_resize_global_position_embedding(self, params): |
| 222 | + input_tensor = params["input_tensor"] |
| 223 | + tgt_max_num_tiles = params["tgt_max_num_tiles"] |
| 224 | + tgt_patch_grid_size = params["tgt_patch_grid_size"] |
| 225 | + expected_output = params["expected_output"] |
| 226 | + |
| 227 | + resized_pos_embed = ( |
| 228 | + TiledTokenPositionalEmbedding._resize_global_position_embedding( |
| 229 | + input_tensor, tgt_max_num_tiles, tgt_patch_grid_size |
| 230 | + ) |
| 231 | + ) |
| 232 | + |
| 233 | + assert_expected(resized_pos_embed, expected_output, atol=1e-3, rtol=1e-4) |
| 234 | + |
| 235 | + @pytest.mark.parametrize( |
| 236 | + "local_params, global_params", |
| 237 | + zip(local_pos_emb_test_cases, global_pos_emb_test_cases), |
| 238 | + ) |
| 239 | + def test_load_state_dict_hook_tiled_token(self, local_params, global_params): |
| 240 | + # Corrected parameters for instantiation |
| 241 | + global_max_num_tiles = global_params["expected_output"].shape[0] |
| 242 | + global_embed_dim = global_params["expected_output"].shape[-1] |
| 243 | + n_tokens_per_tile = local_params["expected_output"].shape[ |
| 244 | + 0 |
| 245 | + ] # Assuming first dimension is tokens per tile |
| 246 | + patch_grid_size = int(math.sqrt(n_tokens_per_tile - 1)) |
| 247 | + tile_size = patch_grid_size * 1 # Assuming patch_size is 1 for simplicity |
| 248 | + patch_size = 1 |
| 249 | + |
| 250 | + # Instantiate the model |
| 251 | + model = TiledTokenPositionalEmbedding( |
| 252 | + max_num_tiles=global_max_num_tiles, |
| 253 | + embed_dim=global_embed_dim, |
| 254 | + tile_size=tile_size, |
| 255 | + patch_size=patch_size, |
| 256 | + ) |
| 257 | + |
| 258 | + # Create state_dict mimicking loading scenario |
| 259 | + state_dict = { |
| 260 | + "model.local_token_positional_embedding": local_params["input_tensor"], |
| 261 | + "model.global_token_positional_embedding": global_params["input_tensor"], |
| 262 | + } |
| 263 | + |
| 264 | + # Call the hook directly (simulating loading process) |
| 265 | + state_dict_copy = state_dict.copy() |
| 266 | + model._load_state_dict_hook(state_dict_copy, "model.") |
| 267 | + |
| 268 | + # Assert expected outputs |
| 269 | + assert_expected( |
| 270 | + state_dict_copy["model.local_token_positional_embedding"], |
| 271 | + local_params["expected_output"], |
| 272 | + atol=1e-3, |
| 273 | + rtol=1e-4, |
| 274 | + ) |
| 275 | + assert_expected( |
| 276 | + state_dict_copy["model.global_token_positional_embedding"], |
| 277 | + global_params["expected_output"], |
| 278 | + atol=1e-3, |
| 279 | + rtol=1e-4, |
| 280 | + ) |
| 281 | + |
| 282 | + # Check for errors with non-square token grid sizes |
| 283 | + with pytest.raises(ValueError): |
| 284 | + bad_state_dict = state_dict.copy() |
| 285 | + |
| 286 | + # add +1 to num_token dimension to make it non-square |
| 287 | + local_pos_emb = bad_state_dict["model.local_token_positional_embedding"] |
| 288 | + bad_local_pos_emb = torch.cat( |
| 289 | + (local_pos_emb, local_pos_emb[0].unsqueeze(0)), dim=0 |
| 290 | + ) |
| 291 | + bad_state_dict["model.local_token_positional_embedding"] = bad_local_pos_emb |
| 292 | + |
| 293 | + # call |
| 294 | + model._load_state_dict_hook(bad_state_dict, "model.") |
| 295 | + |
| 296 | + # Check for errors with non-square tile grid sizes |
| 297 | + with pytest.raises(ValueError): |
| 298 | + bad_state_dict = state_dict.copy() |
| 299 | + |
| 300 | + # add +1 to num_token dimension to make it non-square |
| 301 | + global_pos_emb = bad_state_dict["model.global_token_positional_embedding"] |
| 302 | + bad_global_pos_emb = torch.cat( |
| 303 | + (global_pos_emb, global_pos_emb[:, :, [0]]), dim=2 |
| 304 | + ) |
| 305 | + bad_state_dict[ |
| 306 | + "model.global_token_positional_embedding" |
| 307 | + ] = bad_global_pos_emb |
| 308 | + |
| 309 | + # call |
| 310 | + model._load_state_dict_hook(bad_state_dict, "model.") |
| 311 | + |
| 312 | + @pytest.mark.parametrize("params", tile_pos_emb_test_cases) |
| 313 | + def test_load_state_dict_hook_tile(self, params): |
| 314 | + |
| 315 | + # Extract parameters for instantiation |
| 316 | + max_num_tiles = params["expected_output"].shape[0] |
| 317 | + embed_dim = params["expected_output"].shape[-1] |
| 318 | + |
| 319 | + # Instantiate the model |
| 320 | + model = TilePositionalEmbedding( |
| 321 | + max_num_tiles=max_num_tiles, |
| 322 | + embed_dim=embed_dim, |
| 323 | + ) |
| 324 | + # Create state_dict mimicking loading scenario |
| 325 | + state_dict = { |
| 326 | + "model.embedding": params["input_tensor"], |
| 327 | + } |
| 328 | + |
| 329 | + # Call the hook |
| 330 | + state_dict_copy = state_dict.copy() |
| 331 | + model._load_state_dict_hook(state_dict_copy, "model.") |
| 332 | + |
| 333 | + # Assert expected outputs |
| 334 | + assert_expected( |
| 335 | + state_dict_copy["model.embedding"], |
| 336 | + params["expected_output"], |
| 337 | + atol=1e-3, |
| 338 | + rtol=1e-4, |
| 339 | + ) |
| 340 | + |
| 341 | + # Check for errors with non-square tile grid sizes |
| 342 | + with pytest.raises(ValueError): |
| 343 | + bad_state_dict = state_dict.copy() |
| 344 | + # Manipulate the tensor to have non-equal max_num_tiles_x and max_num_tiles_y |
| 345 | + bad_tensor = torch.cat( |
| 346 | + (params["input_tensor"], params["input_tensor"][:, [0], :, :]), dim=1 |
| 347 | + ) |
| 348 | + bad_state_dict["model.embedding"] = bad_tensor |
| 349 | + model._load_state_dict_hook(bad_state_dict, "model.") |
0 commit comments