|
| 1 | +.. _model_transform_usage_label: |
| 2 | + |
| 3 | +===================== |
| 4 | +Multimodal Transforms |
| 5 | +===================== |
| 6 | + |
| 7 | +Multimodal model transforms apply model-specific data transforms to each modality and prepares :class:`~torchtune.data.Message` |
| 8 | +objects to be input into the model. torchtune currently supports text + image model transforms. |
| 9 | +These are intended to be drop-in replacements for tokenizers in multimodal datasets and support the standard |
| 10 | +``encode``, ``decode``, and ``tokenize_messages``. |
| 11 | + |
| 12 | +.. code-block:: python |
| 13 | +
|
| 14 | + # torchtune.models.flamingo.FlamingoTransform |
| 15 | + class FlamingoTransform(ModelTokenizer, Transform): |
| 16 | + def __init__(...): |
| 17 | + # Text transform - standard tokenization |
| 18 | + self.tokenizer = llama3_tokenizer(...) |
| 19 | + # Image transforms |
| 20 | + self.transform_image = CLIPImageTransform(...) |
| 21 | + self.xattn_mask = VisionCrossAttentionMask(...) |
| 22 | +
|
| 23 | +
|
| 24 | +.. code-block:: python |
| 25 | +
|
| 26 | + from torchtune.models.flamingo import FlamingoTransform |
| 27 | + from torchtune.data import Message |
| 28 | + from PIL import Image |
| 29 | +
|
| 30 | + sample = { |
| 31 | + "messages": [ |
| 32 | + Message( |
| 33 | + role="user", |
| 34 | + content=[ |
| 35 | + {"type": "image", "content": Image.new(mode="RGB", size=(224, 224))}, |
| 36 | + {"type": "image", "content": Image.new(mode="RGB", size=(224, 224))}, |
| 37 | + {"type": "text", "content": "What is common in these two images?"}, |
| 38 | + ], |
| 39 | + ), |
| 40 | + Message( |
| 41 | + role="assistant", |
| 42 | + content="A robot is in both images.", |
| 43 | + ), |
| 44 | + ], |
| 45 | + } |
| 46 | + transform = FlamingoTransform( |
| 47 | + path="/tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model", |
| 48 | + tile_size=224, |
| 49 | + patch_size=14, |
| 50 | + ) |
| 51 | + tokenized_dict = transform(sample) |
| 52 | + print(transform.decode(tokenized_dict["tokens"], skip_special_tokens=False)) |
| 53 | + # '<|begin_of_text|><|start_header_id|>user<|end_header_id|>\n\n<|image|><|image|>What is common in these two images?<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nA robot is in both images.<|eot_id|>' |
| 54 | + print(tokenized_dict["encoder_input"]["images"][0].shape) # (num_tiles, num_channels, tile_height, tile_width) |
| 55 | + # torch.Size([4, 3, 224, 224]) |
| 56 | +
|
| 57 | +
|
| 58 | +Using model transforms |
| 59 | +---------------------- |
| 60 | +You can pass them into any multimodal dataset builder just as you would a model tokenizer. |
| 61 | + |
| 62 | +.. code-block:: python |
| 63 | +
|
| 64 | + from torchtune.datasets.multimodal import the_cauldron_dataset |
| 65 | + from torchtune.models.flamingo import FlamingoTransform |
| 66 | +
|
| 67 | + transform = FlamingoTransform( |
| 68 | + path="/tmp/Meta-Llama-3-8B-Instruct/original/tokenizer.model", |
| 69 | + tile_size=224, |
| 70 | + patch_size=14, |
| 71 | + ) |
| 72 | + ds = the_cauldron_dataset( |
| 73 | + model_transform=transform, |
| 74 | + subset="ai2d", |
| 75 | + ) |
| 76 | + tokenized_dict = ds[0] |
| 77 | + print(transform.decode(tokenized_dict["tokens"], skip_special_tokens=False)) |
| 78 | + # <|begin_of_text|><|start_header_id|>user<|end_header_id|> |
| 79 | + # |
| 80 | + # <|image|>Question: What do respiration and combustion give out |
| 81 | + # Choices: |
| 82 | + # A. Oxygen |
| 83 | + # B. Carbon dioxide |
| 84 | + # C. Nitrogen |
| 85 | + # D. Heat |
| 86 | + # Answer with the letter.<|eot_id|><|start_header_id|>assistant<|end_header_id|> |
| 87 | + # |
| 88 | + # Answer: B<|eot_id|> |
| 89 | + print(tokenized_dict["encoder_input"]["images"][0].shape) # (num_tiles, num_channels, tile_height, tile_width) |
| 90 | + # torch.Size([4, 3, 224, 224]) |
| 91 | +
|
| 92 | +Creating model transforms |
| 93 | +------------------------- |
| 94 | +Model transforms are expected to process both text and images in the sample dictionary. |
| 95 | +Both should be contained in the ``"messages"`` field of the sample. |
| 96 | + |
| 97 | +The following methods are required on the model transform: |
| 98 | + |
| 99 | +- ``tokenize_messages`` |
| 100 | +- ``__call__`` |
| 101 | + |
| 102 | +.. code-block:: python |
| 103 | +
|
| 104 | + from torchtune.modules.tokenizers import ModelTokenizer |
| 105 | + from torchtune.modules.transforms import Transform |
| 106 | +
|
| 107 | + class MyMultimodalTransform(ModelTokenizer, Transform): |
| 108 | + def __init__(...): |
| 109 | + self.tokenizer = my_tokenizer_builder(...) |
| 110 | + self.transform_image = MyImageTransform(...) |
| 111 | +
|
| 112 | + def tokenize_messages( |
| 113 | + self, |
| 114 | + messages: List[Message], |
| 115 | + add_eos: bool = True, |
| 116 | + ) -> Tuple[List[int], List[bool]]: |
| 117 | + # Any other custom logic here |
| 118 | + ... |
| 119 | +
|
| 120 | + return self.tokenizer.tokenize_messages( |
| 121 | + messages=messages, |
| 122 | + add_eos=add_eos, |
| 123 | + ) |
| 124 | +
|
| 125 | + def __call__( |
| 126 | + self, sample: Mapping[str, Any], inference: bool = False |
| 127 | + ) -> Mapping[str, Any]: |
| 128 | + # Expected input parameters for vision encoder |
| 129 | + encoder_input = {"images": [], "aspect_ratio": []} |
| 130 | + messages = sample["messages"] |
| 131 | +
|
| 132 | + # Transform all images in sample |
| 133 | + for message in messages: |
| 134 | + for image in message.get_media(): |
| 135 | + out = self.transform_image({"image": image}, inference=inference) |
| 136 | + encoder_input["images"].append(out["image"]) |
| 137 | + encoder_input["aspect_ratio"].append(out["aspect_ratio"]) |
| 138 | + sample["encoder_input"] = encoder_input |
| 139 | +
|
| 140 | + # Transform all text - returns same dictionary with additional keys "tokens" and "mask" |
| 141 | + sample = self.tokenizer(sample, inference=inference) |
| 142 | +
|
| 143 | + return sample |
| 144 | +
|
| 145 | + transform = MyMultimodalTransform(...) |
| 146 | + sample = { |
| 147 | + "messages": [ |
| 148 | + Message( |
| 149 | + role="user", |
| 150 | + content=[ |
| 151 | + {"type": "image", "content": Image.new(mode="RGB", size=(224, 224))}, |
| 152 | + {"type": "image", "content": Image.new(mode="RGB", size=(224, 224))}, |
| 153 | + {"type": "text", "content": "What is common in these two images?"}, |
| 154 | + ], |
| 155 | + ), |
| 156 | + Message( |
| 157 | + role="assistant", |
| 158 | + content="A robot is in both images.", |
| 159 | + ), |
| 160 | + ], |
| 161 | + } |
| 162 | + tokenized_dict = transform(sample) |
| 163 | + print(tokenized_dict) |
| 164 | + # {'encoder_input': {'images': ..., 'aspect_ratio': ...}, 'tokens': ..., 'mask': ...} |
| 165 | +
|
| 166 | +
|
| 167 | +Example model transforms |
| 168 | +------------------------ |
| 169 | +- Flamingo |
| 170 | + - :class:`~torchtune.models.flamingo.FlamingoTransform` |
0 commit comments