|
| 1 | +# Config for multi-device LoRA finetuning in lora_finetune_distributed_td.py |
| 2 | +# using a Llama3.2 11B Vision Instruct model |
| 3 | +# |
| 4 | +# This config assumes that you've run the following command before launching: |
| 5 | +# tune download meta-llama/Llama-3.2-11B-Vision-Instruct --output-dir /tmp/Llama-3.2-11B-Vision-Instruct --ignore-patterns "original/consolidated*" |
| 6 | +# |
| 7 | +# To launch on 2 devices, run the following command from root: |
| 8 | +# tune run --nproc_per_node 2 lora_finetune_distributed_td --config llama3_2_vision/11B_lora_td |
| 9 | +# |
| 10 | +# You can add specific overrides through the command line. For example |
| 11 | +# to override the checkpointer directory while launching training: |
| 12 | +# tune run --nproc_per_node 2 lora_finetune_distributed_td --config llama3_2_vision/11B_lora_td checkpointer.checkpoint_dir=<YOUR_CHECKPOINT_DIR> |
| 13 | +# |
| 14 | +# This config works best when the model is being fine-tuned on 2+ GPUs. |
| 15 | +# For single device LoRA finetuning please use 11B_lora_single_device.yaml |
| 16 | +# or 11B_qlora_single_device.yaml |
| 17 | + |
| 18 | +# Model arguments |
| 19 | +model: |
| 20 | + _component_: torchtune.models.llama3_2_vision.lora_llama3_2_vision_11b |
| 21 | + decoder_trainable: "frozen" |
| 22 | + encoder_trainable: "lora" |
| 23 | + fusion_trainable: "lora" |
| 24 | + lora_attn_modules: ['q_proj', 'v_proj'] |
| 25 | + apply_lora_to_mlp: False |
| 26 | + apply_lora_to_output: False |
| 27 | + lora_rank: 8 |
| 28 | + lora_alpha: 16 |
| 29 | + lora_dropout: 0.0 |
| 30 | + image_size: 560 # Make sure this matches the image_size in tokenizer |
| 31 | + |
| 32 | +# Transform |
| 33 | +tokenizer: |
| 34 | + _component_: torchtune.models.llama3_2_vision.llama3_2_vision_transform |
| 35 | + path: /tmp/Llama-3.2-11B-Vision-Instruct/original/tokenizer.model |
| 36 | + image_size: 560 |
| 37 | + max_seq_len: 8192 |
| 38 | + |
| 39 | +# Checkpointer |
| 40 | +checkpointer: |
| 41 | + _component_: torchtune.training.FullModelHFCheckpointer |
| 42 | + checkpoint_dir: /tmp/Llama-3.2-11B-Vision-Instruct/ |
| 43 | + checkpoint_files: |
| 44 | + filename_format: model-{}-of-{}.safetensors |
| 45 | + max_filename: "00005" |
| 46 | + recipe_checkpoint: null |
| 47 | + output_dir: /tmp/Llama-3.2-11B-Vision-Instruct/ |
| 48 | + model_type: LLAMA3_VISION |
| 49 | +resume_from_checkpoint: False |
| 50 | +save_adapter_weights_only: False # PeFT formatting not available yet. This will save it in torchtune format only. |
| 51 | + |
| 52 | +# TorchData setup |
| 53 | +dataloader: |
| 54 | + shuffle: True |
| 55 | + collate_fn: torchtune.data.padded_collate_tiled_images_and_mask |
| 56 | + parallel_method: thread |
| 57 | + num_workers: 4 # Per dataset |
| 58 | + pin_memory: true |
| 59 | + packed: False # Set to true for great speed ups |
| 60 | + prefetch_factor: 2 |
| 61 | +seed: null |
| 62 | + |
| 63 | +datasets: |
| 64 | + - source: HuggingFaceM4/the_cauldron |
| 65 | + subset: ocrvqa |
| 66 | + split: train |
| 67 | + transform: |
| 68 | + _component_: torchtune.datasets.multimodal.the_cauldron_transform |
| 69 | + weight: 1.0 |
| 70 | + - source: HuggingFaceM4/the_cauldron |
| 71 | + subset: dvqa |
| 72 | + split: train |
| 73 | + transform: |
| 74 | + _component_: torchtune.datasets.multimodal.the_cauldron_transform |
| 75 | + weight: 1.0 |
| 76 | + - source: HuggingFaceM4/the_cauldron |
| 77 | + subset: docvqa |
| 78 | + split: train |
| 79 | + transform: |
| 80 | + _component_: torchtune.datasets.multimodal.the_cauldron_transform |
| 81 | + weight: 1.0 |
| 82 | + - source: HuggingFaceM4/the_cauldron |
| 83 | + subset: tabmwp |
| 84 | + split: train |
| 85 | + transform: |
| 86 | + _component_: torchtune.datasets.multimodal.the_cauldron_transform |
| 87 | + weight: 1.0 |
| 88 | + |
| 89 | +# Fine-tuning arguments |
| 90 | +epochs: 1 |
| 91 | +# max_steps_per_epoch is required for progress bar |
| 92 | +max_steps_per_epoch: 50 |
| 93 | +batch_size: 4 |
| 94 | +gradient_accumulation_steps: 1 |
| 95 | +optimizer: |
| 96 | + _component_: torch.optim.AdamW |
| 97 | + fused: True |
| 98 | + weight_decay: 0.01 |
| 99 | + lr: 1e-4 |
| 100 | + |
| 101 | +lr_scheduler: |
| 102 | + _component_: torchtune.training.lr_schedulers.get_cosine_schedule_with_warmup |
| 103 | + num_warmup_steps: 100 |
| 104 | +loss: |
| 105 | + _component_: torchtune.modules.loss.CEWithChunkedOutputLoss |
| 106 | +clip_grad_norm: 1.0 |
| 107 | +compile: True # pytorch compile, set to true for perf/memory improvement |
| 108 | + |
| 109 | +# Training env |
| 110 | +device: cuda |
| 111 | + |
| 112 | +# Memory management |
| 113 | +enable_activation_checkpointing: True |
| 114 | +dtype: bf16 |
| 115 | + |
| 116 | +# Logging |
| 117 | +output_dir: /tmp/lora-llama3.2-vision-finetune |
| 118 | +metric_logger: |
| 119 | + _component_: torchtune.training.metric_logging.DiskLogger |
| 120 | + log_dir: /tmp/Llama-3.2-11B-Vision-Instruct/logs |
| 121 | +log_every_n_steps: 1 |
| 122 | +log_peak_memory_stats: True |
0 commit comments