@@ -37,17 +37,6 @@ class TestCLIPImageTransform:
3737 "expected_tile_max" : [1.0 , 1.0 ],
3838 "expected_tile_min" : [0.0 , 0.0 ],
3939 "expected_aspect_ratio" : [1 , 2 ],
40- "pad_max_tiles" : False ,
41- },
42- {
43- "image_size" : (100 , 400 , 3 ),
44- "expected_shape" : torch .Size ([4 , 3 , 224 , 224 ]),
45- "resize_to_max_canvas" : False ,
46- "expected_tile_means" : [0.2230 , 0.1763 , 0.0 , 0.0 ],
47- "expected_tile_max" : [1.0 , 1.0 , 0.0 , 0.0 ],
48- "expected_tile_min" : [0.0 , 0.0 , 0.0 , 0.0 ],
49- "expected_aspect_ratio" : [1 , 2 ],
50- "pad_max_tiles" : True ,
5140 },
5241 {
5342 "image_size" : (1000 , 300 , 3 ),
@@ -57,7 +46,6 @@ class TestCLIPImageTransform:
5746 "expected_tile_max" : [0.9705 , 0.9694 , 0.9521 , 0.9314 ],
5847 "expected_tile_min" : [0.0353 , 0.0435 , 0.0528 , 0.0 ],
5948 "expected_aspect_ratio" : [4 , 1 ],
60- "pad_max_tiles" : False ,
6149 },
6250 {
6351 "image_size" : (200 , 200 , 3 ),
@@ -67,7 +55,6 @@ class TestCLIPImageTransform:
6755 "expected_tile_max" : [0.9922 , 0.9926 , 0.9970 , 0.9908 ],
6856 "expected_tile_min" : [0.0056 , 0.0069 , 0.0059 , 0.0033 ],
6957 "expected_aspect_ratio" : [2 , 2 ],
70- "pad_max_tiles" : False ,
7158 "pad_tiles" : 1 ,
7259 },
7360 {
@@ -78,17 +65,6 @@ class TestCLIPImageTransform:
7865 "expected_tile_max" : [1.0 , 1.0 , 1.0 ],
7966 "expected_tile_min" : [0.0 , 0.0 , 0.0 ],
8067 "expected_aspect_ratio" : [3 , 1 ],
81- "pad_max_tiles" : False ,
82- },
83- {
84- "image_size" : (600 , 200 , 3 ),
85- "expected_shape" : torch .Size ([4 , 3 , 224 , 224 ]),
86- "resize_to_max_canvas" : False ,
87- "expected_tile_means" : [0.4473 , 0.4469 , 0.3032 , 0.0 ],
88- "expected_tile_max" : [1.0 , 1.0 , 1.0 , 0.0 ],
89- "expected_tile_min" : [0.0 , 0.0 , 0.0 , 0.0 ],
90- "expected_aspect_ratio" : [3 , 1 ],
91- "pad_max_tiles" : True ,
9268 },
9369 ],
9470 )
@@ -103,7 +79,6 @@ def test_clip_image_transform(self, params):
10379 resample = "bilinear" ,
10480 dtype = torch .float32 ,
10581 resize_to_max_canvas = params ["resize_to_max_canvas" ],
106- pad_max_tiles = params ["pad_max_tiles" ],
10782 )
10883
10984 image_transform_inference = CLIPImageTransformInference (
@@ -115,7 +90,6 @@ def test_clip_image_transform(self, params):
11590 resample = "bilinear" ,
11691 resize_to_max_canvas = params ["resize_to_max_canvas" ],
11792 antialias = True ,
118- pad_max_tiles = params ["pad_max_tiles" ],
11993 )
12094
12195 # Generate a deterministic image using np.arange for reproducibility
@@ -169,13 +143,7 @@ def test_clip_image_transform(self, params):
169143 ), f"Expected aspect ratio { params ['expected_aspect_ratio' ]} but got { tuple (output_ar .numpy ())} "
170144
171145 # number of tiles matches the product of the aspect ratio
172- if params ["pad_max_tiles" ]:
173- # max_num_tiles=4.
174- assert (
175- 4 == output_image .shape [0 ]
176- ), f"Expected 4 tiles but got { output_image .shape [0 ]} "
177- else :
178- expected_num_tiles = output_ar [0 ] * output_ar [1 ]
179- assert (
180- expected_num_tiles == output_image .shape [0 ]
181- ), f"Expected { expected_num_tiles } tiles but got { output_image .shape [0 ]} "
146+ expected_num_tiles = output_ar [0 ] * output_ar [1 ]
147+ assert (
148+ expected_num_tiles == output_image .shape [0 ]
149+ ), f"Expected { expected_num_tiles } tiles but got { output_image .shape [0 ]} "
0 commit comments