@@ -214,7 +214,7 @@ object DecisionTree extends Serializable with Logging {
214
214
*/
215
215
def train (input : RDD [LabeledPoint ], strategy : Strategy ): DecisionTreeModel = {
216
216
// Converting from standard instance format to weighted input format for tree training
217
- val weightedInput = input.map(x => WeightedLabeledPoint (x.label,x.features))
217
+ val weightedInput = input.map(x => WeightedLabeledPoint (x.label, x.features))
218
218
new DecisionTree (strategy).train(weightedInput : RDD [WeightedLabeledPoint ])
219
219
}
220
220
@@ -238,7 +238,7 @@ object DecisionTree extends Serializable with Logging {
238
238
maxDepth : Int ): DecisionTreeModel = {
239
239
val strategy = new Strategy (algo,impurity,maxDepth)
240
240
// Converting from standard instance format to weighted input format for tree training
241
- val weightedInput = input.map(x => WeightedLabeledPoint (x.label,x.features))
241
+ val weightedInput = input.map(x => WeightedLabeledPoint (x.label, x.features))
242
242
new DecisionTree (strategy).train(weightedInput : RDD [WeightedLabeledPoint ])
243
243
}
244
244
@@ -278,7 +278,7 @@ object DecisionTree extends Serializable with Logging {
278
278
val strategy = new Strategy (algo, impurity, maxDepth, maxBins, quantileCalculationStrategy,
279
279
categoricalFeaturesInfo)
280
280
// Converting from standard instance format to weighted input format for tree training
281
- val weightedInput = input.map(x => WeightedLabeledPoint (x.label,x.features))
281
+ val weightedInput = input.map(x => WeightedLabeledPoint (x.label, x.features))
282
282
new DecisionTree (strategy).train(weightedInput : RDD [WeightedLabeledPoint ])
283
283
}
284
284
0 commit comments