@@ -39,18 +39,18 @@ class LogisticRegressionPMMLModelExportSuite extends FunSuite{
39
39
// assert that the PMML format is as expected
40
40
assert(logisticModelExport.isInstanceOf [PMMLModelExport ])
41
41
var pmml = logisticModelExport.asInstanceOf [PMMLModelExport ].getPmml()
42
- assert(pmml.getHeader().getDescription() === " logistic regression: if predicted value > 0.5, the outcome is positive, or negative otherwise " )
42
+ assert(pmml.getHeader().getDescription() === " logistic regression" )
43
43
// check that the number of fields match the weights size
44
44
assert(pmml.getDataDictionary().getNumberOfFields() === logisticRegressionModel.weights.size + 1 )
45
45
// this verify that there is a model attached to the pmml object and the model is a regression one
46
- // it also verifies that the pmml model has a regression table (for target category YES ) with the same number of predictors of the model weights
46
+ // it also verifies that the pmml model has a regression table (for target category 1 ) with the same number of predictors of the model weights
47
47
assert(pmml.getModels().get(0 ).asInstanceOf [RegressionModel ]
48
- .getRegressionTables().get(0 ).getTargetCategory() === " YES " )
48
+ .getRegressionTables().get(0 ).getTargetCategory() === " 1 " )
49
49
assert(pmml.getModels().get(0 ).asInstanceOf [RegressionModel ]
50
50
.getRegressionTables().get(0 ).getNumericPredictors().size() === logisticRegressionModel.weights.size)
51
- // verify if there is a second table with target category NO and no predictors
51
+ // verify if there is a second table with target category 0 and no predictors
52
52
assert(pmml.getModels().get(0 ).asInstanceOf [RegressionModel ]
53
- .getRegressionTables().get(1 ).getTargetCategory() === " NO " )
53
+ .getRegressionTables().get(1 ).getTargetCategory() === " 0 " )
54
54
assert(pmml.getModels().get(0 ).asInstanceOf [RegressionModel ]
55
55
.getRegressionTables().get(1 ).getNumericPredictors().size() === 0 )
56
56
0 commit comments