@@ -294,8 +294,9 @@ def search(self, query: str, search_type: str, **kwargs: Any) -> list[Document]:
294294
295295 Args:
296296 query: Input text.
297- search_type: Type of search to perform. Can be `'similarity'`, `'mmr'`, or
298- `'similarity_score_threshold'`.
297+ search_type: Type of search to perform.
298+
299+ Can be `'similarity'`, `'mmr'`, or `'similarity_score_threshold'`.
299300 **kwargs: Arguments to pass to the search method.
300301
301302 Returns:
@@ -328,8 +329,9 @@ async def asearch(
328329
329330 Args:
330331 query: Input text.
331- search_type: Type of search to perform. Can be `'similarity'`, `'mmr'`, or
332- `'similarity_score_threshold'`.
332+ search_type: Type of search to perform.
333+
334+ Can be `'similarity'`, `'mmr'`, or `'similarity_score_threshold'`.
333335 **kwargs: Arguments to pass to the search method.
334336
335337 Returns:
@@ -460,9 +462,10 @@ def _similarity_search_with_relevance_scores(
460462 Args:
461463 query: Input text.
462464 k: Number of `Document` objects to return.
463- **kwargs: kwargs to be passed to similarity search. Should include
464- `score_threshold`, An optional floating point value between `0` to `1`
465- to filter the resulting set of retrieved docs
465+ **kwargs: Kwargs to be passed to similarity search.
466+
467+ Should include `score_threshold`, an optional floating point value
468+ between `0` to `1` to filter the resulting set of retrieved docs.
466469
467470 Returns:
468471 List of tuples of `(doc, similarity_score)`
@@ -487,9 +490,10 @@ async def _asimilarity_search_with_relevance_scores(
487490 Args:
488491 query: Input text.
489492 k: Number of `Document` objects to return.
490- **kwargs: kwargs to be passed to similarity search. Should include
491- `score_threshold`, An optional floating point value between `0` to `1`
492- to filter the resulting set of retrieved docs
493+ **kwargs: Kwargs to be passed to similarity search.
494+
495+ Should include `score_threshold`, an optional floating point value
496+ between `0` to `1` to filter the resulting set of retrieved docs.
493497
494498 Returns:
495499 List of tuples of `(doc, similarity_score)`
@@ -511,9 +515,10 @@ def similarity_search_with_relevance_scores(
511515 Args:
512516 query: Input text.
513517 k: Number of `Document` objects to return.
514- **kwargs: kwargs to be passed to similarity search. Should include
515- `score_threshold`, An optional floating point value between `0` to `1`
516- to filter the resulting set of retrieved docs
518+ **kwargs: Kwargs to be passed to similarity search.
519+
520+ Should include `score_threshold`, an optional floating point value
521+ between `0` to `1` to filter the resulting set of retrieved docs.
517522
518523 Returns:
519524 List of tuples of `(doc, similarity_score)`.
@@ -560,9 +565,10 @@ async def asimilarity_search_with_relevance_scores(
560565 Args:
561566 query: Input text.
562567 k: Number of `Document` objects to return.
563- **kwargs: kwargs to be passed to similarity search. Should include
564- `score_threshold`, An optional floating point value between `0` to `1`
565- to filter the resulting set of retrieved docs
568+ **kwargs: Kwargs to be passed to similarity search.
569+
570+ Should include `score_threshold`, an optional floating point value
571+ between `0` to `1` to filter the resulting set of retrieved docs.
566572
567573 Returns:
568574 List of tuples of `(doc, similarity_score)`
@@ -900,13 +906,15 @@ def as_retriever(self, **kwargs: Any) -> VectorStoreRetriever:
900906
901907 Args:
902908 **kwargs: Keyword arguments to pass to the search function.
909+
903910 Can include:
904911
905912 * `search_type`: Defines the type of search that the Retriever should
906913 perform. Can be `'similarity'` (default), `'mmr'`, or
907914 `'similarity_score_threshold'`.
908- * `search_kwargs`: Keyword arguments to pass to the search function. Can
909- include things like:
915+ * `search_kwargs`: Keyword arguments to pass to the search function.
916+
917+ Can include things like:
910918
911919 * `k`: Amount of documents to return (Default: `4`)
912920 * `score_threshold`: Minimum relevance threshold
0 commit comments